The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basi...The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basis for accelerating articular cartilage repairing using molecular tissue engineering technology. TGF β 1 gene at different doses was transduced into the rat bone marrow derived MSCs to examine the effects of TGF β 1 gene transfection on MSCs DNA synthesis, cell cycle kinetics and the expression of proliferating cell nuclear antigen (PCNA). The results showed that 3 μl lipofectamine mediated 1 μg TGF β 1 gene transfection could effectively promote the proliferation of MSCs best; Under this condition (DNA/Lipofectamine=1μg/3μl), flow cytometry and immunohistochemical analyses revealed a significant increase in the 3 H incorporation, DNA content in S phase and the expression of PCNA. Transfection of gene encoding TGF β 1 could induce the cells at G0/G1 phase to S1 phase, modulate the replication of DNA through the enhancement of the PCNA expression, increase the content of DNA at S1 phase and promote the proliferation of MSCs. This new molecular tissue engineering approach could be of potential benefit to enhance the repair of damaged articular cartilage, especially those caused by degenerative joint diseases.展开更多
To construct the antisense transforming growth factorβ1 (TGFβ1) gene and investigate the effect of TGFβ1 autocrine loop blockage on the proliferation of osteosarcoma cells. TGFβ1 cDNA was cloned by RT-PCR from hum...To construct the antisense transforming growth factorβ1 (TGFβ1) gene and investigate the effect of TGFβ1 autocrine loop blockage on the proliferation of osteosarcoma cells. TGFβ1 cDNA was cloned by RT-PCR from human osteosarcoma cells (MG-63) and inserted into pcDNA3 to construct an antisense expression vector, which was dubbed pcDNA3-TGFβ1(-). MTT was used to detect the proliferation of osteosarcoma cells transfected by antisense TGFβl gene. Our results showed that the proliferation of the transfected osteosarcoma cells was suppressed markedly. It is concluded that TGFβ1 autocrine loop blockage in osteosarcoma cells could inhibit cell proliferation, which might be helpful for gene therapy of osteosarcoma.展开更多
基金This project was supported by a grant from NationalNatural Science Foundation of China (No. 30 170 2 70 )
文摘The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basis for accelerating articular cartilage repairing using molecular tissue engineering technology. TGF β 1 gene at different doses was transduced into the rat bone marrow derived MSCs to examine the effects of TGF β 1 gene transfection on MSCs DNA synthesis, cell cycle kinetics and the expression of proliferating cell nuclear antigen (PCNA). The results showed that 3 μl lipofectamine mediated 1 μg TGF β 1 gene transfection could effectively promote the proliferation of MSCs best; Under this condition (DNA/Lipofectamine=1μg/3μl), flow cytometry and immunohistochemical analyses revealed a significant increase in the 3 H incorporation, DNA content in S phase and the expression of PCNA. Transfection of gene encoding TGF β 1 could induce the cells at G0/G1 phase to S1 phase, modulate the replication of DNA through the enhancement of the PCNA expression, increase the content of DNA at S1 phase and promote the proliferation of MSCs. This new molecular tissue engineering approach could be of potential benefit to enhance the repair of damaged articular cartilage, especially those caused by degenerative joint diseases.
基金This work was supported by a grant from Chenguang Project of Wuhan(Serial No.20025001028).
文摘To construct the antisense transforming growth factorβ1 (TGFβ1) gene and investigate the effect of TGFβ1 autocrine loop blockage on the proliferation of osteosarcoma cells. TGFβ1 cDNA was cloned by RT-PCR from human osteosarcoma cells (MG-63) and inserted into pcDNA3 to construct an antisense expression vector, which was dubbed pcDNA3-TGFβ1(-). MTT was used to detect the proliferation of osteosarcoma cells transfected by antisense TGFβl gene. Our results showed that the proliferation of the transfected osteosarcoma cells was suppressed markedly. It is concluded that TGFβ1 autocrine loop blockage in osteosarcoma cells could inhibit cell proliferation, which might be helpful for gene therapy of osteosarcoma.