Background Recent research suggests that β2-adrenergic agonists increase alveolar fluid clearance (AFC) under physiologic and pathologic conditions. It is unknown whether β3-adrenergic agonists also increase AFC u...Background Recent research suggests that β2-adrenergic agonists increase alveolar fluid clearance (AFC) under physiologic and pathologic conditions. It is unknown whether β3-adrenergic agonists also increase AFC under pathologic conditions. The aim of this study was to investigate the effect of β3-adrenergic agonists on AFC following hypoxic lung injury and the mechanisms involved. Methods Hypoxic rats were exposed to 10% oxygen. BRL-37344 (133-adrenergic agonist) or CGP-12177 (selective β3-adrenergic agonist) alone or combined with β receptor antagonists, sodium channel blockers, or Na+/+^-ATPase blockers were perfused into the alveolar space of rats exposed to 10% oxygen for 48 hours. Total lung water content (TLW) and AFC were measured. Results AFC did not change for the first 24 hours but then decreased after 48-hour exposure to 10% oxygen. The perfusion of BRL-37344 or CGP-12177 significantly increased AFC in normal and hypoxic rats. The AFC-stimulating effect of CGP-12177 was lowered with amiloride (a Na+ channel blocker) and ouabain (a Na~/K^-ATPase inhibitor) by 37% and 49%, respectively. Colchicine significantly inhibited the effect of CGP-12177. Conclusions These findings suggest that β3-adrenergic agonists can increase AFC during hypoxic lung injury in rats and accelerate the amelioration of pulmonary edema.展开更多
We studied the activation of β2-adrenergic receptor(β2AR) by norepinephrine, epinephrine and isoprote- renol using docking and molecular dynamics(MD) simulation. The simulation was done on the assumption that β...We studied the activation of β2-adrenergic receptor(β2AR) by norepinephrine, epinephrine and isoprote- renol using docking and molecular dynamics(MD) simulation. The simulation was done on the assumption that β2AR was surrounded with explicit water and infinite lipid bilayer membrane at body temperature. So the result should be close to that under the physiological conditions. We calculated the structure of binding sites in β2AR for the three ac- tivators. We also simulated the change of the conformation ofβ2AR in the transmembrane regions(TMs), in the mo- lecular switches, and in the conserved DRY(Aspartic acid, Arginine and Tyrosine) motif. This study provides detailed information concerning the structure ofβ2AR during activation process.展开更多
The nociceptin receptor(NOP) has been involved in multiple biological functions, including pain, anxiety, cough, substance abuse, cardiovascular control, and immunity. Thus, selective NOP agonists might have clinica...The nociceptin receptor(NOP) has been involved in multiple biological functions, including pain, anxiety, cough, substance abuse, cardiovascular control, and immunity. Thus, selective NOP agonists might have clinical potential for the treatment of related diseases. In the present work, three-dimensional quantitative structure-activity relationship(3D-QSAR) studies were performed on a series of 3-substituted N-benzhydryl-nortropane analogs as NOP agonists using comparative molecular field analysis(Co MFA) and comparative molecular similarity indices analysis(CoM SIA) techniques. The statistically significant models were obtained with 54 compounds in training set by ligand-based atom-by-atom matching alignment. The CoM FA model gave cross-validated coefficient(q2) value of 0.530 using 6 components, non-cross-validated(r2) value of 0.921 with estimated F value of 93.668, and standard error of estimate(SEE) of 0.185. The best Co MSIA model resulted in q2 = 0.592, r2 = 0.945, N = 10, SEE = 0.162, and F = 75.654, based on steric, electrostatic, hydrophobic and hydrogen bond acceptor fields. The predictive ability of the Co MFA and CoM SIA models was further validated using a test set of 18 molecules that were not included in the training set, which resulted in predictive correlation coefficients(r2pred) of 0.551 and 0.637, respectively. Moreover, the CoM FA and CoM SIA contour maps identified the features important for exhibiting potent binding affinities on NOP, and can thus serve as a useful guide for the design of potential NOP agonists.展开更多
Objective: To investigate the effects of gene transfer of a β-adrenergic receptor(β-AR) kinase inhibitor(β ARIct) on pulmonary β2-adrenergic receptor and cAMP following β2-AR agonist treatment in asthmatic m...Objective: To investigate the effects of gene transfer of a β-adrenergic receptor(β-AR) kinase inhibitor(β ARIct) on pulmonary β2-adrenergic receptor and cAMP following β2-AR agonist treatment in asthmatic mice, and to analyze the relationship between the routes of gene delivery and the changes of β2AR and cAMP. Methods: BALB/c mice were sensitized and challenged by ovalbumin to establish the asthmatic model treated with βAR agonist (salbutamol injected intramuscularly). The plasmid with the expression of βARKct was constructed and βARKct gene transfer was performed through intravenous injection or intratracheal instillation in asthmatic mice. The gene expression was measured with Western blot analysis, and the changes of pulmonary β-AR and cAMP evaluated by Radioimmunoassay. Results: The expression of tranfered βARKct gene was detectable in lungs and it was expressed more in the lungs of the mice receiving intratracheally plasmid than those receiving intravenously. The levels of βAR and cAMP were upregulated after using plasmid-βARKct to the asthmatic mice treated with βAR agonist. Conclusion: Our results indicated that there were down-regulation of βAR and cAMP in asthmatic mice treated with βAR agonist. Gene transfer of βARKct could inhibit the extent of the down-regulation of βAR and cAMP. The route of gene delivery could also affect the degree of up-regulation of βAR and cAMP. Gene transfer βARKct may provide a novel approach to the therapeutic strategy for asthma.展开更多
AIM:To establish whether activation of adenosine type-3 receptors(A3Rs)and inhibition of interleukin- 1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challeng...AIM:To establish whether activation of adenosine type-3 receptors(A3Rs)and inhibition of interleukin- 1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores. METHODS:DBA/2 mice were challenged with Bacillus anthracis spores of the toxigenic Sterne strain 43F2. Survival of animals was monitored for 15 d.Ciprofloxacin treatment(50 mg/kg,once daily,intraperitoneally) was initiated at day+1 simultaneously with the ad- ministration of inhibitors,and continued for 10 d.Two doses(2.5 mg/kg and 12.5 mg/kg)of acetyl-tyrosylvalyl-alanyl-aspartyl-chloromethylketone(YVAD)and three doses(0.05,0.15 and 0.3 mg/kg)of 1-[2-Chloro- 6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1- deoxy-N-methyl-β-D-ribofuranuronamide(Cl-IB-MECA) were tested.Animals received YVAD on days 1-4,and Cl-IB-MECA on days 1-10 once daily,subcutaneously. Human lung epithelial cells in culture were challenged with spores or edema toxin and the effects of IB-MECAon phosphorylation of AKT and generation of cAMP were tested. RESULTS:We showed that the outcome of antibiotic treatment in a murine anthrax model could be substantially improved by co-administration of the caspase-1/4 inhibitor YVAD and the A3R agonist Cl-IB-MECA.Combination treatment with these substances and ciprofloxacin resulted in up to 90%synergistic protection.All untreated mice died,and antibiotic alone protected only 30% of animals.We conclude that both substances target the aberrant host signaling that underpins anthrax mortality. CONCLUSION:Our findings suggest new possibilities for combination therapy of anthrax with antibiotics,A3R agonists and caspase-1 inhibitors.展开更多
文摘Background Recent research suggests that β2-adrenergic agonists increase alveolar fluid clearance (AFC) under physiologic and pathologic conditions. It is unknown whether β3-adrenergic agonists also increase AFC under pathologic conditions. The aim of this study was to investigate the effect of β3-adrenergic agonists on AFC following hypoxic lung injury and the mechanisms involved. Methods Hypoxic rats were exposed to 10% oxygen. BRL-37344 (133-adrenergic agonist) or CGP-12177 (selective β3-adrenergic agonist) alone or combined with β receptor antagonists, sodium channel blockers, or Na+/+^-ATPase blockers were perfused into the alveolar space of rats exposed to 10% oxygen for 48 hours. Total lung water content (TLW) and AFC were measured. Results AFC did not change for the first 24 hours but then decreased after 48-hour exposure to 10% oxygen. The perfusion of BRL-37344 or CGP-12177 significantly increased AFC in normal and hypoxic rats. The AFC-stimulating effect of CGP-12177 was lowered with amiloride (a Na+ channel blocker) and ouabain (a Na~/K^-ATPase inhibitor) by 37% and 49%, respectively. Colchicine significantly inhibited the effect of CGP-12177. Conclusions These findings suggest that β3-adrenergic agonists can increase AFC during hypoxic lung injury in rats and accelerate the amelioration of pulmonary edema.
基金Supported by the Young and Middle-Aged Scientists Research Awards Foundation of Shangdong Province,China(No.BS2011SW002)the Research Foundation for Advanced Talents of Ludong University,China(No.LY2011017)
文摘We studied the activation of β2-adrenergic receptor(β2AR) by norepinephrine, epinephrine and isoprote- renol using docking and molecular dynamics(MD) simulation. The simulation was done on the assumption that β2AR was surrounded with explicit water and infinite lipid bilayer membrane at body temperature. So the result should be close to that under the physiological conditions. We calculated the structure of binding sites in β2AR for the three ac- tivators. We also simulated the change of the conformation ofβ2AR in the transmembrane regions(TMs), in the mo- lecular switches, and in the conserved DRY(Aspartic acid, Arginine and Tyrosine) motif. This study provides detailed information concerning the structure ofβ2AR during activation process.
基金supported by the National Natural Science Foundation of China(No.81101687)
文摘The nociceptin receptor(NOP) has been involved in multiple biological functions, including pain, anxiety, cough, substance abuse, cardiovascular control, and immunity. Thus, selective NOP agonists might have clinical potential for the treatment of related diseases. In the present work, three-dimensional quantitative structure-activity relationship(3D-QSAR) studies were performed on a series of 3-substituted N-benzhydryl-nortropane analogs as NOP agonists using comparative molecular field analysis(Co MFA) and comparative molecular similarity indices analysis(CoM SIA) techniques. The statistically significant models were obtained with 54 compounds in training set by ligand-based atom-by-atom matching alignment. The CoM FA model gave cross-validated coefficient(q2) value of 0.530 using 6 components, non-cross-validated(r2) value of 0.921 with estimated F value of 93.668, and standard error of estimate(SEE) of 0.185. The best Co MSIA model resulted in q2 = 0.592, r2 = 0.945, N = 10, SEE = 0.162, and F = 75.654, based on steric, electrostatic, hydrophobic and hydrogen bond acceptor fields. The predictive ability of the Co MFA and CoM SIA models was further validated using a test set of 18 molecules that were not included in the training set, which resulted in predictive correlation coefficients(r2pred) of 0.551 and 0.637, respectively. Moreover, the CoM FA and CoM SIA contour maps identified the features important for exhibiting potent binding affinities on NOP, and can thus serve as a useful guide for the design of potential NOP agonists.
文摘Objective: To investigate the effects of gene transfer of a β-adrenergic receptor(β-AR) kinase inhibitor(β ARIct) on pulmonary β2-adrenergic receptor and cAMP following β2-AR agonist treatment in asthmatic mice, and to analyze the relationship between the routes of gene delivery and the changes of β2AR and cAMP. Methods: BALB/c mice were sensitized and challenged by ovalbumin to establish the asthmatic model treated with βAR agonist (salbutamol injected intramuscularly). The plasmid with the expression of βARKct was constructed and βARKct gene transfer was performed through intravenous injection or intratracheal instillation in asthmatic mice. The gene expression was measured with Western blot analysis, and the changes of pulmonary β-AR and cAMP evaluated by Radioimmunoassay. Results: The expression of tranfered βARKct gene was detectable in lungs and it was expressed more in the lungs of the mice receiving intratracheally plasmid than those receiving intravenously. The levels of βAR and cAMP were upregulated after using plasmid-βARKct to the asthmatic mice treated with βAR agonist. Conclusion: Our results indicated that there were down-regulation of βAR and cAMP in asthmatic mice treated with βAR agonist. Gene transfer of βARKct could inhibit the extent of the down-regulation of βAR and cAMP. The route of gene delivery could also affect the degree of up-regulation of βAR and cAMP. Gene transfer βARKct may provide a novel approach to the therapeutic strategy for asthma.
基金Supported by The US Department of Defense grant DAMD17-03-C-0122
文摘AIM:To establish whether activation of adenosine type-3 receptors(A3Rs)and inhibition of interleukin- 1β-induced inflammation is beneficial in combination with antibiotic therapy to increase survival of mice challenged with anthrax spores. METHODS:DBA/2 mice were challenged with Bacillus anthracis spores of the toxigenic Sterne strain 43F2. Survival of animals was monitored for 15 d.Ciprofloxacin treatment(50 mg/kg,once daily,intraperitoneally) was initiated at day+1 simultaneously with the ad- ministration of inhibitors,and continued for 10 d.Two doses(2.5 mg/kg and 12.5 mg/kg)of acetyl-tyrosylvalyl-alanyl-aspartyl-chloromethylketone(YVAD)and three doses(0.05,0.15 and 0.3 mg/kg)of 1-[2-Chloro- 6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1- deoxy-N-methyl-β-D-ribofuranuronamide(Cl-IB-MECA) were tested.Animals received YVAD on days 1-4,and Cl-IB-MECA on days 1-10 once daily,subcutaneously. Human lung epithelial cells in culture were challenged with spores or edema toxin and the effects of IB-MECAon phosphorylation of AKT and generation of cAMP were tested. RESULTS:We showed that the outcome of antibiotic treatment in a murine anthrax model could be substantially improved by co-administration of the caspase-1/4 inhibitor YVAD and the A3R agonist Cl-IB-MECA.Combination treatment with these substances and ciprofloxacin resulted in up to 90%synergistic protection.All untreated mice died,and antibiotic alone protected only 30% of animals.We conclude that both substances target the aberrant host signaling that underpins anthrax mortality. CONCLUSION:Our findings suggest new possibilities for combination therapy of anthrax with antibiotics,A3R agonists and caspase-1 inhibitors.