This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction bet...This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction between metallic lithium and deionized water where hydrogen is produced and by exposing the metal at ambient conditions. In the transformation process, atmospheric CO<sub>2</sub> gas reacts directly with LiOH solution, in both cases, the CO<sub>2</sub> transformation kinetics was different. For this purpose, reactions between CO<sub>2</sub> and LiOH solution were carried out under controlled temperature and the second process only with metallic lithium, which was exposed at room temperature, however, in these two processes lithium carbonate oxide was formed and identified. According to the results, the efficiency in CO<sub>2</sub> transformation is a function of temperature value which was variable until completely obtaining the by-product, its XRD characterization indicated the formation only of Li<sub>2</sub>CO<sub>3</sub> in both procedures. Under laboratory conditions lithium compounds selectively reacted with CO<sub>2</sub>. In the same way, there is an alternative procedure to obtain LiOH and Li<sub>2</sub>CO<sub>3</sub> for different applications in various areas.展开更多
Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was esta...Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure.展开更多
The microstructure, martensitic transformation behavior, mechanical properties and shape memory effect of Ni54Mn25Ga15Al6 high-temperature shape memory alloy were investigated. By comparing with the Ni54Mn25Ga21 alloy...The microstructure, martensitic transformation behavior, mechanical properties and shape memory effect of Ni54Mn25Ga15Al6 high-temperature shape memory alloy were investigated. By comparing with the Ni54Mn25Ga21 alloy, the effect of Al addition on the properties of Ni-Mn-Ga alloys was analyzed. The results show that the Ni54Mn25Ga15Al6 alloy has a single-phase tetragonal non-modulated martensite structure with lamellar twins. The martensitic transformation start temperature of this alloy is up to 190 ℃, displaying the promising application as a high-temperature shape memory alloy. Al addition in Ni-Mn-Ga alloy can decrease the martensitic transformation temperatures due to the effect of size factor and improve the strength and plasticity. However, the shape memory effect is reduced remarkably with the Al addition.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron m...The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The as-ECAP processed and subsequently annealed Ti49.2Ni50.8 alloys consist of B2 parent phase, Ti4Ni2O phase and B19′ martensite at room temperature. Upon cooling, all samples show B2→R→B19′ two-stage transformation. Upon heating, when the annealing temperature is less than 400℃, the samples show B19′→R→B2 two-stage transformation; when the annealing temperature is higher than 500 ℃, the samples show B19′→B2 single-stage transformation. The B2-R transformation is characterized by wide interval due to the dislocations introduced during ECAP.展开更多
BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a ...BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a case in which CCRT had a reduction effect preoperatively.A 73-year-old woman with pyelonephritis was referred to our hospital.Computed tomography revealed right hydronephrosis and a 6-cm pelvic mass.Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)revealed squamous cell carci-noma.The patient was diagnosed with MT of MCT.Due to her poor general con-dition and renal malfunction,we selected CCRT,expecting fewer adverse effects.After CCRT,her performance status improved,and the tumor size was reduced;surgery was performed.Five months postoperatively,the patient developed dis-semination and lymph node metastases.Palliative chemotherapy was ineffective.She died 18 months after treatment initiation.CONCLUSION EUS-FNB was useful in the diagnosis of MT of MCT;CCRT suppressed the disea-se and improved quality of life.展开更多
Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short ti...Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given.展开更多
The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomecha...The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomechanical cycling induces defects such as dislocations, which evidently affect the shape memory behavior and transformation temperatures. The recovery strain decreases with increasing number of thermomechanical cycles, whereas the irreversible plastic strain increases, especially in the initial few cycles. The stored elastic strain energy has an important influence on transformation temperatures, the A5^σ decreases and the M5^σ increases with increasing number of thermomechanical cycles. The recovery strain, irreversible plastic strain, A5^σ , and M5^σ reach a saturation value after several cycles.展开更多
A three-dimensional transient heat transfer model for laser transformation hardening process has been developed in this paper. The finite size of the laser treated sample, the surface heat loss of the sample, the lat...A three-dimensional transient heat transfer model for laser transformation hardening process has been developed in this paper. The finite size of the laser treated sample, the surface heat loss of the sample, the latent heat of phase transformation and the temperature dependence of thermal properties of materials were considered. The heat source was considered as a moving Gaussian heat flux with a constant velocity. Three-dimension unequally spatial grid explicit finite difference equations, alternating direction implicit finite difference equations and implicit finite difference equations were deduced respectively. Three programs to calculate the temperature field were developed using Fortran language. The transient temperature fields of C22, 42CrMo, C60 steel samples during laser transformation hardening process were calculated using these programs, and the widths and depths of laser transformation hardening zones were also predicted. C22, 42CrMo, C60 steel samples were treated by CO_2 laser,the widths and depths of laser transformation hardening zones of these samples were also measured experimentally. The calculated widths and depths of laser transformation hardening zones are in good agreement with the experimental results.展开更多
A Two-dimensional transient heat transfer model for laser transformation hardening process of cylindrical bodies has been developed. The surface heat loss of the sample, the latent heat of phase transformation, and th...A Two-dimensional transient heat transfer model for laser transformation hardening process of cylindrical bodies has been developed. The surface heat loss of the sample, the latent heat of phase transformation, and the temperature dependence of thermal properties of material were considered. The laser heat source was considered as a moving Gaussian heat flux with a constant velocity. Finite element method was used to calculate the transient temperature field. A program to calculate the temperature field was developed using FORTRAN language. The transient temperature field, the width and depth of laser transformation hardening zone of 42CrMo steel sample during laser transformation hardening process was calculated. The widths and depths of laser transformation hardening zones of 42CrMo steel samples were also measured experimentally. The calculated widths and depths of laser transformation hardening zones are in good agreement with the experimental results.展开更多
In this paper a first-principles study of the electronic structure and stability of B2 Ti1-xNiHfx (x = 0.2, 0.4, 0.6) and B19′ Ti1-xNiHfx(x = 0, 0.5) alloys is presented. The calculations are performed by the pla...In this paper a first-principles study of the electronic structure and stability of B2 Ti1-xNiHfx (x = 0.2, 0.4, 0.6) and B19′ Ti1-xNiHfx(x = 0, 0.5) alloys is presented. The calculations are performed by the plane-wave pseudopotential method in the framework of the density functional theory with the generalized gradient approximation. This paper calculates the lattice parameters, density of states, charge density, and heats of formation. The results show that the electronic structure and stability of B2 Ti1-xNiHfx change gradually with Hf content. However, Hf content has little effect on the electronic structure and stability of B19′ Ti1-xNiHfx. The mechanism of the effect of Hf content on martensitic transformation temperature of TiNiHf alloys is studied from the electronic structure.展开更多
Transformation of mineral matter is important for coal utilization at high temperatures.This is especially true for blended coal.XRD and FTIR were employed together to study the transformation of mineral matter at hig...Transformation of mineral matter is important for coal utilization at high temperatures.This is especially true for blended coal.XRD and FTIR were employed together to study the transformation of mineral matter at high temperature in blended coals.It was found that the concentration of catalytic minerals, namely iron oxides, increases with an increasing ratio of Shenfu coal, which could improve coal gasification.The transformation characteristics of the minerals in blended coals are not exactly predictable from the blend ratio.This was proved by comparing the iron oxide content to the blending ratio.The results from FTIR are comparable with those from XRD.FTIR is an effective method for examining variation in mineral matter.展开更多
The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased mor...The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased more than 100 K by aging at 823 K for 2 h. Especially for the alloys with Ni-content of 50.4 at. pct and 50.6 at. pct, their martensitic transformation start temperatures (Ms) are more than 473 K after aging. TEM observation confirmed that some fine particles precipitate from the matrix during aging. The aged Ni-rich TiNiHf SMAs show the better thermal stability of phase transformation temperatures than the solutiontreated TiNiHf alloys. The fine particles precipitated during aging should be responsible for the increase of phase transformation temperatures and its high stability.展开更多
The importance of controlled temperature during the four-days co-cultivation period was evaluated under the most physiologically relevant conditions for Agrobacterium tumefaciens-mediated transformation of tobacco (Ni...The importance of controlled temperature during the four-days co-cultivation period was evaluated under the most physiologically relevant conditions for Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum L. cv. Xanthi (nn, Smith)) leaf disks. We compared the effect of temperatures ranging from 15°C, 18°C, 20°C, 22°C to 25°C on the stable expression of β-glucuronidase (GUS) activity of 14 days old hygromycin-selected leaf disks, and on the increase in the fresh weight yield of 28 days old kanamycin-selected calli. The highest average of GUS activity was obtained at 20°C among the five temperatures tested although the difference between the 18°C and 20°C treatment was not statistically significant. The GUS activity at 15°C was statistically lower than those at 18°C and 20°C. The GUS activity in 22°C treatment was an intermediate between the highest (18/20°C) and second highest averages (15°C), and was not statistically significantly different. The lowest average of GUS activity was observed at 25°C. The highest increase in the plate average of fresh weight yield was obtained at 20°C among the five temperature tested. The 20°C treatment was statistically significantly better than the 15°C and 18°C treatments. The 20°C co-cultivation treatment resulted in the higher FW yield than 22°C and 25°C even though the differences were not statistically significant. In conclusion, low co-cultivation temperature at 20°C resulted in the reproducible maximum increase in both the fresh weight yield and stable expression of GUS activity after transformation of tobacco leaf disks.展开更多
The effect of heat treatment on the phase transformation behavior of TiNiCu shape memory alloy wires and the temperature memory effect in this alloy were investigated by the resistance method. These results showed tha...The effect of heat treatment on the phase transformation behavior of TiNiCu shape memory alloy wires and the temperature memory effect in this alloy were investigated by the resistance method. These results showed that with increasing annealing temperature and annealing time, the phase transformation temperatures of TiNiCu wires were shifted to higher temperatures in the heating and cooling process. It was also found that incomplete thermal cycles, upon heating the TiNiCu wires, which were arrested at a temperature between the start and finish temperatures of the reverse martensite transformation, could induce a kinetic stop in the next complete thermal cycle. The kinetic stop temperature was closely related to the previous arrested temperature. This phenomenon was defined as the temperature memory effect. The result of this study was consistent with the previous report on the phenomenon obtained using the differential scanning calorimetry method, indicating that temperature memory effect was a common phenomenon in shape memory alloys.展开更多
Microstructure evolution and properties of hot-extruded Inconel 625 alloy were investigated at different creep temperatures, aging time and strain rates. The experimental results indicate that the Inconel 625 alloy ex...Microstructure evolution and properties of hot-extruded Inconel 625 alloy were investigated at different creep temperatures, aging time and strain rates. The experimental results indicate that the Inconel 625 alloy exhibits an excellent creep resistance at 700 ℃ and below. When the creep temperature rises to 750 ℃, the creep resistance falls drastically due to the failure of phase transformation strengthening and the precipitation of a large amount of δ phase and σ phase at the grain boundary. The special temperature-sensitive characteristics of Inconel 625 alloy play a very important role in its fracture. When the strain rate is 8.33×10^-3s^-1, the strength of the specimen is higher than that of other parameters attributed to the effect of phase transformation strengthening. With the increase of Ni3(Al, Ti), the phase transformation strengthening inhibits thickening of the stacking faults into twins and improves the overall mechanical properties of the alloy. With the increase of the aging time, the granular Cr-rich M23C6 carbides continue to precipitate at the grain boundary, which hinders the movement of the dislocations and obviously increases the strength of the samples. Especially, the yield strength increases several times.展开更多
The reverse transformation behavior of TiNi alloy wires prestrained at different temperatures is studied in this paper. Experimental results show that prestrain at different temperatures obviously affects the reverse ...The reverse transformation behavior of TiNi alloy wires prestrained at different temperatures is studied in this paper. Experimental results show that prestrain at different temperatures obviously affects the reverse transformation behavior of the TiNi alloy wire. A single peak appears on the DSC curves of wires prestrained at 253-313K (in the martensite state). However deformed at 333K, three consecutive peaks appear on the DSC curves of wires with a smaller prestrain and a single peak appears on the DSC curves of the wires with a larger prestrain. The recovery strain ratio of the wires prestrained at 253-313K are very similar. However, the ratio of the wire predeformed at 333K is obviously smaller than that of the wire prestrained in the martensite state.展开更多
The effects of nano-AlN and sintering temperature on bending strength and wear resistance of low temperature vitrified bond for diamond grinding tools were studied. Furthermore, the phase transformation during sinteri...The effects of nano-AlN and sintering temperature on bending strength and wear resistance of low temperature vitrified bond for diamond grinding tools were studied. Furthermore, the phase transformation during sintering process was investigated by means of thermo-gravimetric analysis (TG), differential thermal analysis (DTA) and X-ray diffraction (XRD). The results show that the higher bending strength and wear resistance of low temperature vitrified bond are obtained by adding nano-AlN in bonds and sintering at optimum temperature. Nano-AlN added in bonds promotes the crystallization during sintering process and refines the grain sizes of crystalline phase.展开更多
Internal friction (IF) spectra during reverse martensitic transformation from 35 to 135°C at different temperature rates of 0.5,0.75,and 1°C/min for Ti50Ni27Cu23 shape memory alloy (SMA) samples were mea...Internal friction (IF) spectra during reverse martensitic transformation from 35 to 135°C at different temperature rates of 0.5,0.75,and 1°C/min for Ti50Ni27Cu23 shape memory alloy (SMA) samples were measured with a dynamic mechanical analyzer,respectively.The IF spectra were characterized by IF peak increasing progressively and peak shifting toward high temperature with an increase in temperature rate.An iterative approach was used to calculate the precise intrinsic and approximate transitory IF contributions to the normal IF spectrum.The quantitatively analyzed results indicate that the transitory IF of this alloy is nonlinearly dependent on the temperature rate and obeys a power law with a power coefficient of 0.55.The predicted and experimental IF spectra at different temperature rates of 0.75 and 1°C/min agree well with each other,respectively.展开更多
The structure and disorder-order transformation of NdxFe60.5-x Pt39.5(x = 0, 0.5, 1.0, 1.5) alloys were investigated in situ by high temperature X-ray diffraction. The results show that the lattice parameter a of di...The structure and disorder-order transformation of NdxFe60.5-x Pt39.5(x = 0, 0.5, 1.0, 1.5) alloys were investigated in situ by high temperature X-ray diffraction. The results show that the lattice parameter a of disordered γ phase (FCC, Al structure type) and the lattice parameter ratio c/a of ordered γ1 phase (FCT, L10 structure type) increase linearly with increasing Nd concentration, whereas the c/a ratio decreases with increasing temperature. The transition temperature from ordered FCT to disordered FCC decreases with increasing Nd concentration, but for alloys quenched rapidly from γ phase region into ice-water it increases with increasing Nd.展开更多
文摘This paper presents a study on CO<sub>2</sub> atmospheric transformation which was reacted directly with lithium hydroxide solution and metallic lithium. This solution was obtained through the reaction between metallic lithium and deionized water where hydrogen is produced and by exposing the metal at ambient conditions. In the transformation process, atmospheric CO<sub>2</sub> gas reacts directly with LiOH solution, in both cases, the CO<sub>2</sub> transformation kinetics was different. For this purpose, reactions between CO<sub>2</sub> and LiOH solution were carried out under controlled temperature and the second process only with metallic lithium, which was exposed at room temperature, however, in these two processes lithium carbonate oxide was formed and identified. According to the results, the efficiency in CO<sub>2</sub> transformation is a function of temperature value which was variable until completely obtaining the by-product, its XRD characterization indicated the formation only of Li<sub>2</sub>CO<sub>3</sub> in both procedures. Under laboratory conditions lithium compounds selectively reacted with CO<sub>2</sub>. In the same way, there is an alternative procedure to obtain LiOH and Li<sub>2</sub>CO<sub>3</sub> for different applications in various areas.
基金Project (51171104) supported by the National Natural Science Foundation of China
文摘Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure.
基金Project(51101057)supported by the National Natural Science Foundation of ChinaProject(12MS10)supported by the Fundamental Research Funds for the Central Universities of China
文摘The microstructure, martensitic transformation behavior, mechanical properties and shape memory effect of Ni54Mn25Ga15Al6 high-temperature shape memory alloy were investigated. By comparing with the Ni54Mn25Ga21 alloy, the effect of Al addition on the properties of Ni-Mn-Ga alloys was analyzed. The results show that the Ni54Mn25Ga15Al6 alloy has a single-phase tetragonal non-modulated martensite structure with lamellar twins. The martensitic transformation start temperature of this alloy is up to 190 ℃, displaying the promising application as a high-temperature shape memory alloy. Al addition in Ni-Mn-Ga alloy can decrease the martensitic transformation temperatures due to the effect of size factor and improve the strength and plasticity. However, the shape memory effect is reduced remarkably with the Al addition.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
基金Project(51001035)supported by the National Natural Science Foundation of ChinaProject(LBH-Q14035)supported by the Postdoctoral Funds for Scientific Research Initiation of Heilongjiang Province,ChinaProject(HEUCF20151002)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effect of annealing temperature on the martensitic transformation of a Ti49.2Ni50.8 alloy processed by equal channel angular pressing (ECAP) was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The as-ECAP processed and subsequently annealed Ti49.2Ni50.8 alloys consist of B2 parent phase, Ti4Ni2O phase and B19′ martensite at room temperature. Upon cooling, all samples show B2→R→B19′ two-stage transformation. Upon heating, when the annealing temperature is less than 400℃, the samples show B19′→R→B2 two-stage transformation; when the annealing temperature is higher than 500 ℃, the samples show B19′→B2 single-stage transformation. The B2-R transformation is characterized by wide interval due to the dislocations introduced during ECAP.
文摘BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a case in which CCRT had a reduction effect preoperatively.A 73-year-old woman with pyelonephritis was referred to our hospital.Computed tomography revealed right hydronephrosis and a 6-cm pelvic mass.Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)revealed squamous cell carci-noma.The patient was diagnosed with MT of MCT.Due to her poor general con-dition and renal malfunction,we selected CCRT,expecting fewer adverse effects.After CCRT,her performance status improved,and the tumor size was reduced;surgery was performed.Five months postoperatively,the patient developed dis-semination and lymph node metastases.Palliative chemotherapy was ineffective.She died 18 months after treatment initiation.CONCLUSION EUS-FNB was useful in the diagnosis of MT of MCT;CCRT suppressed the disea-se and improved quality of life.
文摘Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given.
文摘The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomechanical cycling induces defects such as dislocations, which evidently affect the shape memory behavior and transformation temperatures. The recovery strain decreases with increasing number of thermomechanical cycles, whereas the irreversible plastic strain increases, especially in the initial few cycles. The stored elastic strain energy has an important influence on transformation temperatures, the A5^σ decreases and the M5^σ increases with increasing number of thermomechanical cycles. The recovery strain, irreversible plastic strain, A5^σ , and M5^σ reach a saturation value after several cycles.
文摘A three-dimensional transient heat transfer model for laser transformation hardening process has been developed in this paper. The finite size of the laser treated sample, the surface heat loss of the sample, the latent heat of phase transformation and the temperature dependence of thermal properties of materials were considered. The heat source was considered as a moving Gaussian heat flux with a constant velocity. Three-dimension unequally spatial grid explicit finite difference equations, alternating direction implicit finite difference equations and implicit finite difference equations were deduced respectively. Three programs to calculate the temperature field were developed using Fortran language. The transient temperature fields of C22, 42CrMo, C60 steel samples during laser transformation hardening process were calculated using these programs, and the widths and depths of laser transformation hardening zones were also predicted. C22, 42CrMo, C60 steel samples were treated by CO_2 laser,the widths and depths of laser transformation hardening zones of these samples were also measured experimentally. The calculated widths and depths of laser transformation hardening zones are in good agreement with the experimental results.
文摘A Two-dimensional transient heat transfer model for laser transformation hardening process of cylindrical bodies has been developed. The surface heat loss of the sample, the latent heat of phase transformation, and the temperature dependence of thermal properties of material were considered. The laser heat source was considered as a moving Gaussian heat flux with a constant velocity. Finite element method was used to calculate the transient temperature field. A program to calculate the temperature field was developed using FORTRAN language. The transient temperature field, the width and depth of laser transformation hardening zone of 42CrMo steel sample during laser transformation hardening process was calculated. The widths and depths of laser transformation hardening zones of 42CrMo steel samples were also measured experimentally. The calculated widths and depths of laser transformation hardening zones are in good agreement with the experimental results.
基金Project supported by the National Natural Science Foundation of China (Grant No 50471018).
文摘In this paper a first-principles study of the electronic structure and stability of B2 Ti1-xNiHfx (x = 0.2, 0.4, 0.6) and B19′ Ti1-xNiHfx(x = 0, 0.5) alloys is presented. The calculations are performed by the plane-wave pseudopotential method in the framework of the density functional theory with the generalized gradient approximation. This paper calculates the lattice parameters, density of states, charge density, and heats of formation. The results show that the electronic structure and stability of B2 Ti1-xNiHfx change gradually with Hf content. However, Hf content has little effect on the electronic structure and stability of B19′ Ti1-xNiHfx. The mechanism of the effect of Hf content on martensitic transformation temperature of TiNiHf alloys is studied from the electronic structure.
基金Projects 2005CB217701-03 supported by the National Basic Research Program of China2005DFA60220 by the Ministry of Science and Technology of China
文摘Transformation of mineral matter is important for coal utilization at high temperatures.This is especially true for blended coal.XRD and FTIR were employed together to study the transformation of mineral matter at high temperature in blended coals.It was found that the concentration of catalytic minerals, namely iron oxides, increases with an increasing ratio of Shenfu coal, which could improve coal gasification.The transformation characteristics of the minerals in blended coals are not exactly predictable from the blend ratio.This was proved by comparing the iron oxide content to the blending ratio.The results from FTIR are comparable with those from XRD.FTIR is an effective method for examining variation in mineral matter.
文摘The use of Ni-rich TiNiHf alloys as high temperature shape memory alloys (SMAs) through aging has been presented. For Ni-rich Ti80-xNixHf20 alloys, their phase transformation temperatures are averagely increased more than 100 K by aging at 823 K for 2 h. Especially for the alloys with Ni-content of 50.4 at. pct and 50.6 at. pct, their martensitic transformation start temperatures (Ms) are more than 473 K after aging. TEM observation confirmed that some fine particles precipitate from the matrix during aging. The aged Ni-rich TiNiHf SMAs show the better thermal stability of phase transformation temperatures than the solutiontreated TiNiHf alloys. The fine particles precipitated during aging should be responsible for the increase of phase transformation temperatures and its high stability.
文摘The importance of controlled temperature during the four-days co-cultivation period was evaluated under the most physiologically relevant conditions for Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum L. cv. Xanthi (nn, Smith)) leaf disks. We compared the effect of temperatures ranging from 15°C, 18°C, 20°C, 22°C to 25°C on the stable expression of β-glucuronidase (GUS) activity of 14 days old hygromycin-selected leaf disks, and on the increase in the fresh weight yield of 28 days old kanamycin-selected calli. The highest average of GUS activity was obtained at 20°C among the five temperatures tested although the difference between the 18°C and 20°C treatment was not statistically significant. The GUS activity at 15°C was statistically lower than those at 18°C and 20°C. The GUS activity in 22°C treatment was an intermediate between the highest (18/20°C) and second highest averages (15°C), and was not statistically significantly different. The lowest average of GUS activity was observed at 25°C. The highest increase in the plate average of fresh weight yield was obtained at 20°C among the five temperature tested. The 20°C treatment was statistically significantly better than the 15°C and 18°C treatments. The 20°C co-cultivation treatment resulted in the higher FW yield than 22°C and 25°C even though the differences were not statistically significant. In conclusion, low co-cultivation temperature at 20°C resulted in the reproducible maximum increase in both the fresh weight yield and stable expression of GUS activity after transformation of tobacco leaf disks.
文摘The effect of heat treatment on the phase transformation behavior of TiNiCu shape memory alloy wires and the temperature memory effect in this alloy were investigated by the resistance method. These results showed that with increasing annealing temperature and annealing time, the phase transformation temperatures of TiNiCu wires were shifted to higher temperatures in the heating and cooling process. It was also found that incomplete thermal cycles, upon heating the TiNiCu wires, which were arrested at a temperature between the start and finish temperatures of the reverse martensite transformation, could induce a kinetic stop in the next complete thermal cycle. The kinetic stop temperature was closely related to the previous arrested temperature. This phenomenon was defined as the temperature memory effect. The result of this study was consistent with the previous report on the phenomenon obtained using the differential scanning calorimetry method, indicating that temperature memory effect was a common phenomenon in shape memory alloys.
基金Funded by the National Natural Science Foundation of China(Nos.51664041,51561021,and 51665032)in part by Longyuan Youth Innovation and Entrepreneurship ProjectsBRICS STI Framework Programme
文摘Microstructure evolution and properties of hot-extruded Inconel 625 alloy were investigated at different creep temperatures, aging time and strain rates. The experimental results indicate that the Inconel 625 alloy exhibits an excellent creep resistance at 700 ℃ and below. When the creep temperature rises to 750 ℃, the creep resistance falls drastically due to the failure of phase transformation strengthening and the precipitation of a large amount of δ phase and σ phase at the grain boundary. The special temperature-sensitive characteristics of Inconel 625 alloy play a very important role in its fracture. When the strain rate is 8.33×10^-3s^-1, the strength of the specimen is higher than that of other parameters attributed to the effect of phase transformation strengthening. With the increase of Ni3(Al, Ti), the phase transformation strengthening inhibits thickening of the stacking faults into twins and improves the overall mechanical properties of the alloy. With the increase of the aging time, the granular Cr-rich M23C6 carbides continue to precipitate at the grain boundary, which hinders the movement of the dislocations and obviously increases the strength of the samples. Especially, the yield strength increases several times.
基金This work is funded by the National Natural Science Foundation the Peoples Republic of China (No. 50071037)
文摘The reverse transformation behavior of TiNi alloy wires prestrained at different temperatures is studied in this paper. Experimental results show that prestrain at different temperatures obviously affects the reverse transformation behavior of the TiNi alloy wire. A single peak appears on the DSC curves of wires prestrained at 253-313K (in the martensite state). However deformed at 333K, three consecutive peaks appear on the DSC curves of wires with a smaller prestrain and a single peak appears on the DSC curves of the wires with a larger prestrain. The recovery strain ratio of the wires prestrained at 253-313K are very similar. However, the ratio of the wire predeformed at 333K is obviously smaller than that of the wire prestrained in the martensite state.
基金Project(E2008000834) supported by the Natural Science Foundation of Hebei Province, China
文摘The effects of nano-AlN and sintering temperature on bending strength and wear resistance of low temperature vitrified bond for diamond grinding tools were studied. Furthermore, the phase transformation during sintering process was investigated by means of thermo-gravimetric analysis (TG), differential thermal analysis (DTA) and X-ray diffraction (XRD). The results show that the higher bending strength and wear resistance of low temperature vitrified bond are obtained by adding nano-AlN in bonds and sintering at optimum temperature. Nano-AlN added in bonds promotes the crystallization during sintering process and refines the grain sizes of crystalline phase.
文摘Internal friction (IF) spectra during reverse martensitic transformation from 35 to 135°C at different temperature rates of 0.5,0.75,and 1°C/min for Ti50Ni27Cu23 shape memory alloy (SMA) samples were measured with a dynamic mechanical analyzer,respectively.The IF spectra were characterized by IF peak increasing progressively and peak shifting toward high temperature with an increase in temperature rate.An iterative approach was used to calculate the precise intrinsic and approximate transitory IF contributions to the normal IF spectrum.The quantitatively analyzed results indicate that the transitory IF of this alloy is nonlinearly dependent on the temperature rate and obeys a power law with a power coefficient of 0.55.The predicted and experimental IF spectra at different temperature rates of 0.75 and 1°C/min agree well with each other,respectively.
文摘The structure and disorder-order transformation of NdxFe60.5-x Pt39.5(x = 0, 0.5, 1.0, 1.5) alloys were investigated in situ by high temperature X-ray diffraction. The results show that the lattice parameter a of disordered γ phase (FCC, Al structure type) and the lattice parameter ratio c/a of ordered γ1 phase (FCT, L10 structure type) increase linearly with increasing Nd concentration, whereas the c/a ratio decreases with increasing temperature. The transition temperature from ordered FCT to disordered FCC decreases with increasing Nd concentration, but for alloys quenched rapidly from γ phase region into ice-water it increases with increasing Nd.