Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to ...Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to its donor parent 93-11.Further investigation identified two quantitative trait loci(QTL)on chromosome 11,designated qGW11a and qGW11b,which contribute to 1000-grain weight with an additive effect.LOC_Os11g05690,encoding the amino acid permease OsCAT8,is the target gene of qGW11a.Overexpression of OsCAT8 resulted in decreased grain weight,while OsCAT8 knockout mutants exhibited increased grain weight.The 287-bp located within the OsCAT8 promoter region of 93-11 negatively regulates its activity,which is subsequently correlated with an increase in grain size and weight.These results suggest that OsCAT8 functions as a negative regulator of grain size and grain weight in rice.展开更多
The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand b...The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.展开更多
In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation ...In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538.展开更多
The development and application of the small-grain rice sterile line Zhuo201S(Z201S)has demonstrated its potential for mechanized hybrid rice seed production,leading to significant cost reductions.However,the molecula...The development and application of the small-grain rice sterile line Zhuo201S(Z201S)has demonstrated its potential for mechanized hybrid rice seed production,leading to significant cost reductions.However,the molecular mechanism responsible for the small-grain size characteristic of Z201S remains unclear.In this study,we conducted a genetic analysis using near-isogenic lines constructed from Z210S,a small-grain rice sterile line,and R2115,a normal-grain variety.The results revealed that the small-grain trait in Z201S is governed by a single partially dominant gene which also enhances grain number.Through mapping,we localized the causal gene to the short arm of chromosome 2,within a 113 kb physical region delimited by the molecular markers S2-4-1 and LB63.Transgenic analysis and gene expression assays indicated LOC_Os02g14760 as the most likely candidate gene,suggesting that the small-grain size trait of Z201S is controlled by a novel locus that has not been previously identified.展开更多
Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a la...Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime.An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio.An approach for characterizing grain size was proposed using spectral central frequency ratio(SCFR)based on time-frequency analysis.The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density;even at high power densities,a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect.This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density.Furthermore,both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials;however,the shear wave SCFR is more sensitive to finer-grained materials.This study holds great significance for evaluating metal material properties using laser ultrasound.展开更多
The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant imp...The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant importance for understanding the interactive processes of wind and water forces,as well as the provenance of sediment.However,there are relatively few investigations on the characteristics of such sediment at present.In this study,we researched three aeolian-alluvial interactive stratigraphic profiles and different types of surface sediment on the desert-oasis transitional zone of southern margin of the Gurbantunggut Desert.Based on the optically stimulated luminescence(OSL)dating of aeolian sand and analyses of quartz sand grain size and surface micro-texture,we explored the aeolian-alluvial environmental change at southern margin of the desert in Holocene,as well as the provenance of sediment.The results indicated that the grain size characteristics of different types of sediment in the stratigraphic profiles were similar to those of modern dune sand,interdune sand,muddy desert surface soil,and riverbed sand.Their frequency curves were unimodal or bimodal,and cumulative probability curves were two-segment or three-segment,mainly composed of suspension load and saltation load.The quartz sand in the sediment at southern margin of the desert had undergone alternating transformation of various exogenic forces,with short transportation distance and time,and sedimentary environment was relatively humid.In Holocene,southern margin of the desert primarily featured braided river deposits,and during intermittent period of river activity,there were also aeolian deposits such as sand sheet deposits,stabilized dune deposits,and mobile dune deposits.The provenance for Holocene alluvial deposits at southern margin of the desert remains relatively constant,with the debris of the Tianshan Mountains being the primary provenance.Aeolian sand is mainly near-source recharge,which is formed by in situ deposition of fluvial or lacustrine materials in southern margin of the desert transported by wind erosion,and its provenance was still the weathered debris of the Tianshan Mountains.In addition,the sand in interior of the desert may be transported by northwest wind in desert-scale,thus affecting the development of dunes in southern margin of the desert.The results of this study provide a reference for understanding the composition and provenance changes of desert sand in the context of global climate change.展开更多
Elucidating the genetic basis of natural variation in grain size and weight among rice varieties can help breeders develop high-yielding varieties.We identified a novel gene,GW3a(Grain Weight 3a)(LOC_Os03g27350),that ...Elucidating the genetic basis of natural variation in grain size and weight among rice varieties can help breeders develop high-yielding varieties.We identified a novel gene,GW3a(Grain Weight 3a)(LOC_Os03g27350),that affects rice grain size and weight.gw3a mutants showed higher total starch content and dry matter accumulation than the wild type(WT),Nipponbare,suggesting that GW3a negatively regulates grain size and weight.Moreover,our study found that GW3a interacted with OsATG8 by cleaving it,suggesting that GW3a may be involved in the assembly of autophagosomes and starch degradation in plants.The haplotype analysis of GW3a showed functional differences between indica and japonica rice.Taken together,we conclude that GW3a is expressed in the autophagosome pathway regulating starch metabolism in rice,affecting yield-related traits,such as grain size,grain weight and thousand grain weight(TGW).Our findings also shed new light on autophagy-mediated yield trait regulation,proposing a possible strategy for the genetic improvement of high-yield germplasm in rice.展开更多
The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in ...The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs.展开更多
The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study del...The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study delineated the sedimentary environment zoning in the northern sea area of Qingdao through cluster analysis of grain size parameters derived from 123 surface sediment samples.The study analyzed the correlation between sediment geotechnical indices and grain size parameters across diverse sedimentary environments.A correlation equation was established for samples exhibiting a strong correlation.The study found four distinct sedimentary environments in the study area:coastal,transitional,shallow sea,and residual.Within the same sedimentary environment,the average grain size and sorting coefficient exhibit significant correlations with geotechnical indices such as water content,density,shear strength,plastic limit,liquid limit,and plastic index.However,notable disparities in the correlation between grain size parameters and geotechnical indices emerge across different sedimentary environments.展开更多
Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is ...Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is one of the important factors affecting bubble evolution. In current study, we first predict the thermodynamic behaviors of point defects as well as the interplay between vacancy and gas atom in both UO_(2) and U_(3)Si_(2) according to ab initio approach. Then, we establish the irradiation-induced bubble phase-field model to investigate the formation and evolution of intra-and inter-granular gas bubbles. The effects of fission rate and temperature on the evolutions of bubble morphologies in UO_(2) and U_(3)Si_(2) have been revealed. Especially, a comparison of porosities under different grain sizes is examined and analyzed. To understand the thermal conductivity as functions of grain size and porosity, the heat transfer capability of U_(3)Si_(2) is evaluated.展开更多
Natural gas hydrate is prospected as a new and promising,highly clean energy resource that mainly occurs in perma-frost or at continental margins.Its formation is subject to many soil conditions,such as grain size,mat...Natural gas hydrate is prospected as a new and promising,highly clean energy resource that mainly occurs in perma-frost or at continental margins.Its formation is subject to many soil conditions,such as grain size,matrix materials,pore morphology,and permeability.In this study,we propose that grain size is the most decisive parameter that affects the saturation of gas hydrate in sediments based on data from Ocean Drilling Program Leg 164 and Mallik 5L-38,which represent marine sediments and terrestrial sediments,respectively.Our study reveals that high gas hydrate saturation generally occurs in coarse-grained sand,regardless of whether sediment formation is homogeneous or inhomogeneous,and the sorting of sediments may affect the hydrate saturation to a certain degree.Using grain size and sorting of sediments may be the most intuitive proxy method for a rough estimation of hydrate saturation.Further study is necessary to fully understand the relationship between hydrate morphology and sediment grain size,even though massive hydrates are typically found in fine clayey-rich sediments.展开更多
The accumulation processes of loess in northeastern(NE)China record the varying characteristics of the East Asian Monsoons(EAM)and the evolution of the local environment.In this study,grain size end-member analysis of...The accumulation processes of loess in northeastern(NE)China record the varying characteristics of the East Asian Monsoons(EAM)and the evolution of the local environment.In this study,grain size end-member analysis of the Dajiugang(DJG)section deposited since the Last Glacial in Chifeng City,NE China was used to reveal the dynamic depositional characteristics of loess and environmental evolution of NE China.Results showed that the Chifeng loess comprises three grain size end-members(EM),EM1(7.38μm),EM2(49.4μm)and EM3(90.00μm),indicating the three transport dynamics of dust delivered to the region.The EM1 represents atmospheric dust as the background.The EM2,mainly derived from relatively distant-sources deposition,and EM3,material transported over a short distance,correspond to the intensity of southwesterly winds and the East Asian Winter Monsoon(EAWM),respectively.Results of climate reconstruction,combined with other records,showed that the climate was generally cold and dry with a strong EAWM and a weak East Asian summer monsoon(EASM)during the stadial-period[Marine Isotope Stage(MIS)4 and MIS 2 stage].The climate was predominantly warm and humid,with weak EAWM and surface winds and strong EASM in interstadial-period(MIS 3 and MIS 1 stage).Comparisons between indicators,e.g.,EM3,the LR04 benthicδ18O stack and summer insolation at 65°N suggest that the strong EAWM is induced by increasing the Northern Hemisphere ice volume and reduced summer solar radiation.展开更多
The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the...The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.展开更多
Grain size and weight are closely related traits determining yield in rice(Oryza sativa L.).Since indica and japonica rice varieties differ significantly in multiple traits,a high-generation recombinant inbred line(RI...Grain size and weight are closely related traits determining yield in rice(Oryza sativa L.).Since indica and japonica rice varieties differ significantly in multiple traits,a high-generation recombinant inbred line(RIL)population derived from the crossing LH9(indica)and RPY(japonica)was used to map grainrelated traits in six environments.Pyramiding of the quantitative trait loci(QTL)for thousand-grain weight showed that combinations of multiple QTL significantly increased the phenotypic effect.A novel gene named GSW3.1 controlling grain size and weight was discovered using the major QTL for the colocalization of grain width and thousand-grain weight on chromosome 3.Gene editing revealed that GSW3.1(LOC_Os03g16850)was pleiotropic,positively regulating grain size and weight while affecting several other agronomic traits.Haplotype analysis indicated that some traits,including grain width and weight,were highly correlated with indica-japonica differentiation.展开更多
Plenty of high-resolution paleoclimate investigations of the last thousand years were carried out to potentially predict future climate changes.Mountainous ombrotrophic peatland is one of the best recorders for high-r...Plenty of high-resolution paleoclimate investigations of the last thousand years were carried out to potentially predict future climate changes.Mountainous ombrotrophic peatland is one of the best recorders for high-resolution paleoclimate studies in the forest area.Grain size analysis was carried out on ombrotrophic peat profile in the eastern mountainous region of Jilin Province,Northeast China.The peat profile lasts the past 2000 a by four radiocarbon(AMS14C)ages.The results showed that the inorganic minerals in the peat profile are mainly silt,with some contribution from clay and a minor amount of sand,which are mainly due to wind dust and suspended transportation.Two paleoclimate stages are found in this peat profile by phytolith analysis,peat cellulose isotope research and historical documents:ca.45–1550 AD,relatively cold period;ca.1550 AD–present,relatively warm period.This finding is important for the initial study of paleoclimatic changes over the last 2000 a in the mountainous area of eastern mountainous area,Jilin Province,Northeast China.展开更多
The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to...The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.展开更多
The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and arti...The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and artificial neural network(ANN).With that purpose,a ZK30 magnesium alloy was friction stir processed(FSP)using three different severe conditions to obtain fine grain microstructures(with average grain sizes between 2 and 3μm)prone to extensive superplastic response.The three friction stir processed samples clearly deformed by grain boundary sliding(GBS)deformation mechanism at high temperatures.The maximum elongations to failure,well over 400% at high strain rate of 10^(-2)s^(-1),were reached at 400℃ in the material with coarsest grain size of 2.8μm,and at 300℃ for the finest grain size of 2μm.Nevertheless,the superplastic response decreased at 350℃ and 400℃ due to thermal instabilities and grain coarsening,which makes it difficult to assess the operative deformation mechanism at such temperatures.This work highlights that the machine learning models considered,especially the ANN model with higher accuracy in predicting flow stress values,allow determining adequately the superplastic creep behavior including other possible grain size scenarios.展开更多
The effects of grain size on the shift of neutral layer of AZ31 magnesium alloy sheets with different grain sizes ranging from 12.1 to 34.7μm were investigated by the 90° V-bending tests at 150 °C. The resu...The effects of grain size on the shift of neutral layer of AZ31 magnesium alloy sheets with different grain sizes ranging from 12.1 to 34.7μm were investigated by the 90° V-bending tests at 150 °C. The results show that the neutral layer tends to shift to outer region of the sheets and the coefficient of neutral layer value (k-value) increases with the increasing grain size. This phenomenon is mainly owing to the enhanced asymmetry between the outer tension region and inner compression region with the increase of grain size. Twinning dominates the deformation in inner region while slips dominate the deformation in outer region.展开更多
The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average ...The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.展开更多
Experimental study has been conducted for an interstitial free(IF) sheet steel on its surface roughness evolution and formability with respect to grain size and sheet thickness effect. The surface roughness of IF she...Experimental study has been conducted for an interstitial free(IF) sheet steel on its surface roughness evolution and formability with respect to grain size and sheet thickness effect. The surface roughness of IF sheet steel is proportional to effective strain, grain size and inversely proportional to sheet thickness; the larger grain reduces the formability by accelerating the surface roughening rate and enhance formability by raising the workhardening rate, while the latter effect plays the dominate role. The grain size effect on surface roughening and formability is more obvious when the sheets are thinner.展开更多
基金supported by grants from the National Natural Science Foundation of China(32325038)the Postdoctoral Fellowship Program of CPSF(GZB20230499)+1 种基金the Sichuan Science and Technology Program(24NSFSC4494)the Open Project Program(SKL-ZY202212)of State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China.We thank the High-Performance Computing Platform of Sichuan Agricultural University for its support for the analysis of substitution segments in CSSL9-17.
文摘Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to its donor parent 93-11.Further investigation identified two quantitative trait loci(QTL)on chromosome 11,designated qGW11a and qGW11b,which contribute to 1000-grain weight with an additive effect.LOC_Os11g05690,encoding the amino acid permease OsCAT8,is the target gene of qGW11a.Overexpression of OsCAT8 resulted in decreased grain weight,while OsCAT8 knockout mutants exhibited increased grain weight.The 287-bp located within the OsCAT8 promoter region of 93-11 negatively regulates its activity,which is subsequently correlated with an increase in grain size and weight.These results suggest that OsCAT8 functions as a negative regulator of grain size and grain weight in rice.
基金the National Natural Science Foundation of China(42230720,32160410,42167069)the Gansu Key Research and Development Program(22YF7FA078,GZTZ20240415)Gansu Province Forestry and Grassland Science and Technology Innovation Project(LCCX202303).
文摘The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.
基金supported by the National Key Research and Development Program of China(2017YFD0300202-2)the National Natural Science Foundation of China(31871567)the Young Scholar of Tang(2017)。
文摘In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538.
基金the National Natural Science Foundation of China(32172078 and U22A20502)。
文摘The development and application of the small-grain rice sterile line Zhuo201S(Z201S)has demonstrated its potential for mechanized hybrid rice seed production,leading to significant cost reductions.However,the molecular mechanism responsible for the small-grain size characteristic of Z201S remains unclear.In this study,we conducted a genetic analysis using near-isogenic lines constructed from Z210S,a small-grain rice sterile line,and R2115,a normal-grain variety.The results revealed that the small-grain trait in Z201S is governed by a single partially dominant gene which also enhances grain number.Through mapping,we localized the causal gene to the short arm of chromosome 2,within a 113 kb physical region delimited by the molecular markers S2-4-1 and LB63.Transgenic analysis and gene expression assays indicated LOC_Os02g14760 as the most likely candidate gene,suggesting that the small-grain size trait of Z201S is controlled by a novel locus that has not been previously identified.
基金supported in part by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2023ME073)the National Natural Science Foundation of China (Grant No.51805304)+1 种基金the Education Department of Shandong Province,China (Grant No.2022KJ130)Qilu University of Technology (Shandong Academy of Sciences),China (Grant Nos.2023PY009,2021JC02008 and 2022GH005)。
文摘Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime.An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio.An approach for characterizing grain size was proposed using spectral central frequency ratio(SCFR)based on time-frequency analysis.The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density;even at high power densities,a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect.This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density.Furthermore,both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials;however,the shear wave SCFR is more sensitive to finer-grained materials.This study holds great significance for evaluating metal material properties using laser ultrasound.
基金the National Natural Science Foundation of China(42071011)the 2023 Annual Postgraduate Research and Innovation Foundation of Fujian Normal University,China.
文摘The southern margin of the Gurbantunggut Desert,China,is characterized by alternating layers of aeolian and alluvial deposits.Investigating the characteristics of arenaceous sediment in this area is of significant importance for understanding the interactive processes of wind and water forces,as well as the provenance of sediment.However,there are relatively few investigations on the characteristics of such sediment at present.In this study,we researched three aeolian-alluvial interactive stratigraphic profiles and different types of surface sediment on the desert-oasis transitional zone of southern margin of the Gurbantunggut Desert.Based on the optically stimulated luminescence(OSL)dating of aeolian sand and analyses of quartz sand grain size and surface micro-texture,we explored the aeolian-alluvial environmental change at southern margin of the desert in Holocene,as well as the provenance of sediment.The results indicated that the grain size characteristics of different types of sediment in the stratigraphic profiles were similar to those of modern dune sand,interdune sand,muddy desert surface soil,and riverbed sand.Their frequency curves were unimodal or bimodal,and cumulative probability curves were two-segment or three-segment,mainly composed of suspension load and saltation load.The quartz sand in the sediment at southern margin of the desert had undergone alternating transformation of various exogenic forces,with short transportation distance and time,and sedimentary environment was relatively humid.In Holocene,southern margin of the desert primarily featured braided river deposits,and during intermittent period of river activity,there were also aeolian deposits such as sand sheet deposits,stabilized dune deposits,and mobile dune deposits.The provenance for Holocene alluvial deposits at southern margin of the desert remains relatively constant,with the debris of the Tianshan Mountains being the primary provenance.Aeolian sand is mainly near-source recharge,which is formed by in situ deposition of fluvial or lacustrine materials in southern margin of the desert transported by wind erosion,and its provenance was still the weathered debris of the Tianshan Mountains.In addition,the sand in interior of the desert may be transported by northwest wind in desert-scale,thus affecting the development of dunes in southern margin of the desert.The results of this study provide a reference for understanding the composition and provenance changes of desert sand in the context of global climate change.
基金This research was supported by the National Natural Science Foundation of China(32160485)Jiangxi Double Thousand Plan(jxsq2023201057)Key R&D Plan of Jiangxi Province(20224BBF62001,20224BBF61030).
文摘Elucidating the genetic basis of natural variation in grain size and weight among rice varieties can help breeders develop high-yielding varieties.We identified a novel gene,GW3a(Grain Weight 3a)(LOC_Os03g27350),that affects rice grain size and weight.gw3a mutants showed higher total starch content and dry matter accumulation than the wild type(WT),Nipponbare,suggesting that GW3a negatively regulates grain size and weight.Moreover,our study found that GW3a interacted with OsATG8 by cleaving it,suggesting that GW3a may be involved in the assembly of autophagosomes and starch degradation in plants.The haplotype analysis of GW3a showed functional differences between indica and japonica rice.Taken together,we conclude that GW3a is expressed in the autophagosome pathway regulating starch metabolism in rice,affecting yield-related traits,such as grain size,grain weight and thousand grain weight(TGW).Our findings also shed new light on autophagy-mediated yield trait regulation,proposing a possible strategy for the genetic improvement of high-yield germplasm in rice.
基金supported by the National Natural Science Foundation of China(32372118,32188102,32071993)the Qian Qian Academician Workstation,Specific Research Fund of the Innovation Platform for Academicians in Hainan Province(YSPTZX202303)+1 种基金Key Research and Development Program of Zhejiang Province(2021C02056)Hainan Seed Industry Laboratory,China(B21HJ0220)。
文摘The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs.
基金funded by the National Key R&D Program Project(No.2022YFC3103604).
文摘The comprehension of sediment grain size parameters and the corresponding sedimentary environment holds paramount importance in elucidating the engineering geological attributes of the subaqueous seabed.This study delineated the sedimentary environment zoning in the northern sea area of Qingdao through cluster analysis of grain size parameters derived from 123 surface sediment samples.The study analyzed the correlation between sediment geotechnical indices and grain size parameters across diverse sedimentary environments.A correlation equation was established for samples exhibiting a strong correlation.The study found four distinct sedimentary environments in the study area:coastal,transitional,shallow sea,and residual.Within the same sedimentary environment,the average grain size and sorting coefficient exhibit significant correlations with geotechnical indices such as water content,density,shear strength,plastic limit,liquid limit,and plastic index.However,notable disparities in the correlation between grain size parameters and geotechnical indices emerge across different sedimentary environments.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.U2167217,12205286,and 11905025)the National MCF Energy Research and Development Program of China (Grant No.2018YFE0308105)。
文摘Numerous irradiation-induced gas bubbles are created in the nuclear fuel during irradiation, leading to the change of microstructure and the degradation of mechanical and thermal properties. The grain size of fuel is one of the important factors affecting bubble evolution. In current study, we first predict the thermodynamic behaviors of point defects as well as the interplay between vacancy and gas atom in both UO_(2) and U_(3)Si_(2) according to ab initio approach. Then, we establish the irradiation-induced bubble phase-field model to investigate the formation and evolution of intra-and inter-granular gas bubbles. The effects of fission rate and temperature on the evolutions of bubble morphologies in UO_(2) and U_(3)Si_(2) have been revealed. Especially, a comparison of porosities under different grain sizes is examined and analyzed. To understand the thermal conductivity as functions of grain size and porosity, the heat transfer capability of U_(3)Si_(2) is evaluated.
基金financially supported by the Marine Economy Development Foundation of Guangdong Province(No.GDNRC[2022]44).
文摘Natural gas hydrate is prospected as a new and promising,highly clean energy resource that mainly occurs in perma-frost or at continental margins.Its formation is subject to many soil conditions,such as grain size,matrix materials,pore morphology,and permeability.In this study,we propose that grain size is the most decisive parameter that affects the saturation of gas hydrate in sediments based on data from Ocean Drilling Program Leg 164 and Mallik 5L-38,which represent marine sediments and terrestrial sediments,respectively.Our study reveals that high gas hydrate saturation generally occurs in coarse-grained sand,regardless of whether sediment formation is homogeneous or inhomogeneous,and the sorting of sediments may affect the hydrate saturation to a certain degree.Using grain size and sorting of sediments may be the most intuitive proxy method for a rough estimation of hydrate saturation.Further study is necessary to fully understand the relationship between hydrate morphology and sediment grain size,even though massive hydrates are typically found in fine clayey-rich sediments.
基金supported by the National Natural Science Foundation of China(No:41771245).
文摘The accumulation processes of loess in northeastern(NE)China record the varying characteristics of the East Asian Monsoons(EAM)and the evolution of the local environment.In this study,grain size end-member analysis of the Dajiugang(DJG)section deposited since the Last Glacial in Chifeng City,NE China was used to reveal the dynamic depositional characteristics of loess and environmental evolution of NE China.Results showed that the Chifeng loess comprises three grain size end-members(EM),EM1(7.38μm),EM2(49.4μm)and EM3(90.00μm),indicating the three transport dynamics of dust delivered to the region.The EM1 represents atmospheric dust as the background.The EM2,mainly derived from relatively distant-sources deposition,and EM3,material transported over a short distance,correspond to the intensity of southwesterly winds and the East Asian Winter Monsoon(EAWM),respectively.Results of climate reconstruction,combined with other records,showed that the climate was generally cold and dry with a strong EAWM and a weak East Asian summer monsoon(EASM)during the stadial-period[Marine Isotope Stage(MIS)4 and MIS 2 stage].The climate was predominantly warm and humid,with weak EAWM and surface winds and strong EASM in interstadial-period(MIS 3 and MIS 1 stage).Comparisons between indicators,e.g.,EM3,the LR04 benthicδ18O stack and summer insolation at 65°N suggest that the strong EAWM is induced by increasing the Northern Hemisphere ice volume and reduced summer solar radiation.
基金Project(2023YFC2907403)supported by the National Key R&D Program of ChinaProject(52074021)supported by the National Natural Science Foundation of China+1 种基金Project(2242045)supported by Beijing Natural Science Foundation,ChinaProject(ZD202216)supported by the Beijing Association of Higher Education,China。
文摘The macroscopic mechanical properties of rocks are significantly influenced by their microstructure.As a material bonded by mineral grains,the grain morphology of crystalline rock is the primary factor influencing the strength.However,most strength criteria neglect the strength variations caused by different grain characteristics in rocks.Furthermore,the traditional linear criteria tend to overestimate tensile strength and exhibit apex singularity.To address these shortcomings,a piecewise strength criterion that considers the grain size effect has been proposed.A part of an ellipse was employed to construct the envelope of the tensive-shear region on the meridian plane,to accurately reproduce the low tensile-compressive strength ratio.Based on the analysis of experimental data,both linear and exponential modification functions that account for grain size effects were integrated into the proposed criterion.The corresponding finite element algorithm has been implemented.The accuracy and applicability of the proposed criterion were validated by comparing with the experimental data.
基金supported by the National Key Research and Development Program of China(2016YFD0100400)the National Special Key Project for Transgenic Breeding(2016ZX08001001)。
文摘Grain size and weight are closely related traits determining yield in rice(Oryza sativa L.).Since indica and japonica rice varieties differ significantly in multiple traits,a high-generation recombinant inbred line(RIL)population derived from the crossing LH9(indica)and RPY(japonica)was used to map grainrelated traits in six environments.Pyramiding of the quantitative trait loci(QTL)for thousand-grain weight showed that combinations of multiple QTL significantly increased the phenotypic effect.A novel gene named GSW3.1 controlling grain size and weight was discovered using the major QTL for the colocalization of grain width and thousand-grain weight on chromosome 3.Gene editing revealed that GSW3.1(LOC_Os03g16850)was pleiotropic,positively regulating grain size and weight while affecting several other agronomic traits.Haplotype analysis indicated that some traits,including grain width and weight,were highly correlated with indica-japonica differentiation.
基金Supported by projects of National Natural Science Foundation of China(Nos.40702027,41472173)Ministry of Land and Resources Outstanding Youth Science and Technology Talent Training Program of China(No.201311111).
文摘Plenty of high-resolution paleoclimate investigations of the last thousand years were carried out to potentially predict future climate changes.Mountainous ombrotrophic peatland is one of the best recorders for high-resolution paleoclimate studies in the forest area.Grain size analysis was carried out on ombrotrophic peat profile in the eastern mountainous region of Jilin Province,Northeast China.The peat profile lasts the past 2000 a by four radiocarbon(AMS14C)ages.The results showed that the inorganic minerals in the peat profile are mainly silt,with some contribution from clay and a minor amount of sand,which are mainly due to wind dust and suspended transportation.Two paleoclimate stages are found in this peat profile by phytolith analysis,peat cellulose isotope research and historical documents:ca.45–1550 AD,relatively cold period;ca.1550 AD–present,relatively warm period.This finding is important for the initial study of paleoclimatic changes over the last 2000 a in the mountainous area of eastern mountainous area,Jilin Province,Northeast China.
文摘The paper presents the change in grain-size composition of lignite under cyclic freezing-thawing (FTC) and wetting-drying (WDC). The article shows that in the spring and autumn periods the lignites can be subjected to repeated freezing-thawing and wetting-drying, which determines the possibility of changing their grain-size composition and structure. Experimental studies in laboratory conditions on the influence of cyclic freezing-thawing (FTC) and wetting-drying (WDC) on the quality indicators of lignites have been carried out, their granulometric (fractional) composition has been studied. Freezing-thawing cycle conditions are as follows (FTC): minimum exposure temperature: -20°C;maximum: +5°C;relative humidity: 30%;number of processing cycles: 3. Wetting-drying cycles are as follows (WDC): drying temperatures are +20, +40, +60, +80°C, drying time 90 minutes, the coals are further subjected to rain (soaking) for a period of water saturation to humidity of 30% - 40% and dry again. The number of wetting-drying cycles is 3 times. The tests have revealed the destructive effects of FTC and WDC on the samples of lower metamorphic grade coal, and the cycles of wet-dry lead to the much higher yield of fine sizes (-6+0;-13+0 mm) than the cycles of freeze-thaw. Furthermore, it is found that the increase in the yield of fines depends on the heating temperature: coal disintegration proceeds more intensively at a higher temperature of drying.
基金obtained from Comunidad de Madrid through the Universidad Politécnica de Madrid in the line of Action for Encouraging Research from Young Doctors(project CdM ref:APOYO-JOVENES779NQU-57-LSWH0F,UPM ref M190020074AOC,CAREDEL)MINECO(Spain)Project MAT2015-68919-C3-1-R(MINECO/FEDER)+4 种基金project PID2020-118626RB-I00(RAPIDAL)awarded by MCIN/AEI/10.13039/501100011033FSP assistanceProject CAREDELProject RAPIDAL for research contractsMCIN/AEI for a FPI contract number PRE2021-096977。
文摘The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and artificial neural network(ANN).With that purpose,a ZK30 magnesium alloy was friction stir processed(FSP)using three different severe conditions to obtain fine grain microstructures(with average grain sizes between 2 and 3μm)prone to extensive superplastic response.The three friction stir processed samples clearly deformed by grain boundary sliding(GBS)deformation mechanism at high temperatures.The maximum elongations to failure,well over 400% at high strain rate of 10^(-2)s^(-1),were reached at 400℃ in the material with coarsest grain size of 2.8μm,and at 300℃ for the finest grain size of 2μm.Nevertheless,the superplastic response decreased at 350℃ and 400℃ due to thermal instabilities and grain coarsening,which makes it difficult to assess the operative deformation mechanism at such temperatures.This work highlights that the machine learning models considered,especially the ANN model with higher accuracy in predicting flow stress values,allow determining adequately the superplastic creep behavior including other possible grain size scenarios.
基金Project(CSTC2012GGB50003)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(CDJZR13130081)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of grain size on the shift of neutral layer of AZ31 magnesium alloy sheets with different grain sizes ranging from 12.1 to 34.7μm were investigated by the 90° V-bending tests at 150 °C. The results show that the neutral layer tends to shift to outer region of the sheets and the coefficient of neutral layer value (k-value) increases with the increasing grain size. This phenomenon is mainly owing to the enhanced asymmetry between the outer tension region and inner compression region with the increase of grain size. Twinning dominates the deformation in inner region while slips dominate the deformation in outer region.
基金Project(2014M562447) supported by the China Postdoctoral Science FoundationProject(51275416) supported by the National Natural Science Foundation of China+1 种基金Project(BP201503) supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)China
文摘The effect of grain size of primary α phase on the bonding interface characteristic and shear strength of bond was investigated in the press bonding of Ti-6Al-4V alloy. The quantitative results show that the average size of voids increases from 0.8 to 2.6 μm and the bonding ratio decreases from 90.9% to 77.8% with an increase in grain size of primary α phase from 8.2 to 16.4 μm. The shape of voids changes from the tiny round to the irregular strip. The highest shear strength of bond can be obtained in the Ti-6Al-4V alloy with a grain size of 8.2 μm. This is contributed to the higher ability of plastic flow and more short-paths for diffusion in the alloy with smaller grain size of primary α phase, which promote the void closure process and the formation of α/β grains across bonding interface.
文摘Experimental study has been conducted for an interstitial free(IF) sheet steel on its surface roughness evolution and formability with respect to grain size and sheet thickness effect. The surface roughness of IF sheet steel is proportional to effective strain, grain size and inversely proportional to sheet thickness; the larger grain reduces the formability by accelerating the surface roughening rate and enhance formability by raising the workhardening rate, while the latter effect plays the dominate role. The grain size effect on surface roughening and formability is more obvious when the sheets are thinner.