We report on a micro-Raman investigation of inducing defects in mono-layer, hi-layer and tri-layer graphene by γ ray radiation. It is found that the radiation exposure results in two-dimensional (2D) and G band pos...We report on a micro-Raman investigation of inducing defects in mono-layer, hi-layer and tri-layer graphene by γ ray radiation. It is found that the radiation exposure results in two-dimensional (2D) and G band position evolution with the layer number increasing and D and D~ bands rising, suggesting the presence of defects and related crystal lattice deformation in graphene. Bi-layer graphene is more stable than mono- and tri-layer graphene, indicating that the former is a better candidate in the application of radiation environments. Also, the DC electrical property of the mono-layer graphene device shows that the defects increase the carrier density.展开更多
Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial deliv...Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were ...High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.展开更多
BACKGROUND Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis.Postoperative adjuvant external radiation therapy(RT)has been shown to effectively prevent ...BACKGROUND Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis.Postoperative adjuvant external radiation therapy(RT)has been shown to effectively prevent recurrence after liver cancer resection.However,there are multiple RT techniques available,and the differ-ential effects of these techniques in preventing postoperative liver cancer re-currence require further investigation.AIM To assess the advantages and disadvantages of various adjuvant external RT methods after liver resection based on overall survival(OS)and disease-free survival(DFS)and to determine the optimal strategy.METHODS This study involved network meta-analyses and followed the PRISMA guidelines.The data of qualified studies published before July 10,2023,were collected from PubMed,Embase,the Web of Science,and the Cochrane Library.We included relevant studies on postoperative external beam RT after liver resection that had OS and DFS as the primary endpoints.The magnitudes of the effects were determined using risk ratios with 95%confidential intervals.The results were analyzed using R software and STATA software.RESULTS A total of 12 studies,including 1265 patients with hepatocellular carcinoma(HCC)after liver resection,were included in this study.There was no significant heterogeneity in the direct paired comparisons,and there were no significant differences in the inclusion or exclusion criteria,intervention measures,or outcome indicators,meeting the assumptions of heterogeneity and transitivity.OS analysis revealed that patients who underwent stereotactic body radiotherapy(SBRT)after resection had longer OS than those who underwent intensity modulated radiotherapy(IMRT)or 3-dimensional conformal RT(3D-CRT).DFS analysis revealed that patients who underwent 3D-CRT after resection had the longest DFS.Patients who underwent IMRT after resection had longer OS than those who underwent 3D-CRT and longer DFS than those who underwent SBRT.CONCLUSION HCC patients who undergo liver cancer resection must consider distinct advantages and disadvantages when choosing between SBRT and 3D-CRT.IMRT,a RT technique that is associated with longer OS than 3D-CRT and longer DFS than SBRT,may be a preferred option.展开更多
Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently pr...Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently proposed to reduce radiation divergence being a representative example [Opt. Lett. 45 5416(2020)]. We present a rigorous approach that allows for an analytical description of the electromagnetic processes that occur when the structure is excited by a single waveguide TM mode. In other words, the corresponding canonical waveguide diffraction problem is solved in a rigorous formulation. This is a continuation of our previous papers which considered simpler cases with a homogeneous or two-layer dielectric filling. Here we use the same analytical approach based on the Wiener–Hopf–Fock technique and deal with the more complicated case of a three-layer dielectric lining. Using the obtained rigorous solution, we discuss the possibility of manipulating the far-field radiation pattern using a third layer made of a low permittivity material.展开更多
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
To elucidate the characteristics and mechanism of electromagnetic radiation in granite under impact loading,based on the quasi-static compression tests,this paper conducts dynamic compression experiments on granite us...To elucidate the characteristics and mechanism of electromagnetic radiation in granite under impact loading,based on the quasi-static compression tests,this paper conducts dynamic compression experiments on granite using Hopkinson pressure bar and one-stage light-gas gun as loading methods.Combined with experimental and theoretical analyses,the relationship between mechanical and electromagnetic responses under impact loads of different intensities,and the time-domain signals of electromagnetic radiation generated by a single crack under different strain rates are studied.The intensity and frequency of electromagnetic radiation increase with the increasing compressive strain rate.According to the thermal activation theory,it reveals the microscopic mechanism of the transition from intergranular microcracks to transgranular microcracks in terms of strain sensitivity.It also serves as the physical basis for the increase in electromagnetic radiation intensity amplitude and frequency with increasing compressive strain rate.Transgranular microcracks are the primary cause of electromagnetic radiation generated by fractures.展开更多
This article presents illustrations of an extended model of the electron to visualize how it spins and radiates in the external magnetic field. A time-varying magnetic field B produces a rotational induced electric fi...This article presents illustrations of an extended model of the electron to visualize how it spins and radiates in the external magnetic field. A time-varying magnetic field B produces a rotational induced electric field E which rotates (spins) the electron about its axis. In time-constant magnetic field: the electron radiates the cyclotron radiation. In time-varying magnetic field: synchrotron radiation is generated. The couplings between spin, acceleration and radiation will be discussed.展开更多
In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according ...In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to a constant and relativistic speed at a distance L from a perfectly conducting plane. The charge of the electron was represented by a spherical charge distribution located within the Compton wavelength of the electron. Subsequently, the electron is incident on the perfect conductor giving rise to transition radiation. The energy associated with the transition radiation depends on the parameter L. It was shown that an inequality satisfied by the vacuum energy density will emerge when the length L is pushed to cosmological dimensions and the product of the radiated energy, and the time duration of emission is constrained by Heisenberg’s uncertainty principle. In this paper, a similar analysis is conducted with a chain of electrons oscillating sinusoidally and located above a conducting plane. In the thought experiment presented in this paper, the behavior of the energy radiated by the chain of oscillating electrons is studied in the frequency domain as a function of the length L of the chain. It is shown that when the length L is pushed to cosmological dimensions and the energy radiated within a single burst of duration of half a period of oscillation is constrained by the fact that electromagnetic energy consists of photons, an inequality satisfied by the vacuum energy density emerges as a result. The derived inequality is given by where is the vacuum energy density. This result is consistent with the measured value of the vacuum energy density, which is 5.38 × 10<sup>-10</sup> J/m. The result obtained here is in better agreement with experimental data than the one obtained in Part I of this paper with time domain radiation.展开更多
A COnstellation of Radiation BElt Survey(CORBES)program is proposed by the Sub-Group on Radiation Belt(SGRB)of TGCSS,COSPAR.To address the open qustions about the dynamics of the Earth’s radiation belt,CORBES mission...A COnstellation of Radiation BElt Survey(CORBES)program is proposed by the Sub-Group on Radiation Belt(SGRB)of TGCSS,COSPAR.To address the open qustions about the dynamics of the Earth’s radiation belt,CORBES mission would use a constellation of small/CubeSats to take an ultra-fast survey of the Earth’s radiation belt.The concept,science objectives and preliminary technical design of CORBES are introduced.This mission is an international multilateral cooperation mission coordinated by COSPAR.The SGRB Science Activities and COSPAR HQs Coordinate Activities on CORBES are summaried.展开更多
The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of th...The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of the media, the transition radiation is mainly determined by the properties of the surface layer. The possibility of using transition radiation to study the surface of substances is discussed. In addition, due to the hard radiation present in space, this research may be important for the use of light monoatomic layers as a material for satellite antennas, “solar sails” and cover layers in a future space (interstellar) mission.展开更多
This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal latt...This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.展开更多
In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions ...In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions were obtained.The diameter of the projectile is 3-5 mm,the impact velocity is 3.13-6.58 km/s,and the chamber pressure is 0.56-990 Pa.The spectrum of ejected debris cloud in the 250-310 nm band were obtained using a transient spectral measurement system and a multi-channel radiometer measurement system.The test results reveal that the flash radiation intensity increases as a power function with the kinetic energy of the impact.Furthermore,the peak value of the line spectrum decreases as the chamber vacuum degree increases,while the radiation width gradually expands.The line spectrum in the spectral characterization curve corresponds to the ejected debris clouds splitting phase,which does not produce significant line spectrum during material fragmentation and is dominated by the continuum spectrum produced by blackbody radiation.There will appear one or three characteristic peaks in the flash radiation time curve,the first and second peaks correspond to the penetration phase and the third peak corresponds to the expansion phase of the ejected debris clouds on the time scale,the first and second peaks are more sensitive to the chamber vacuum degree,and when the pressure is higher than 99 Pa,the first and second characteristic peaks will disappear.The radiant heat attenuation of the flash under different impact conditions is significantly different,the attenuation exponent has a power function relationship with the impact velocity and the chamber vacuum degree,while the attenuation exponent has a linear relationship with the diameter of the projectile,the specific expression of the attenuation exponent is obtained by fitting.The findings from this research can serve as a valuable reference for remote diagnostic technologies based on flash radiation characteristics.展开更多
Double-cropping rice in South China continues to break the total yield record,but the yield potential of singlecropping rice is not being realized.Radiation use efficiency(RUE)has been singled out as an important dete...Double-cropping rice in South China continues to break the total yield record,but the yield potential of singlecropping rice is not being realized.Radiation use efficiency(RUE)has been singled out as an important determinant of grain yield in many cereal species.However,there is no information on whether the yield gaps in doublecropping rice involve differences in RUE.Field experiments were performed over two years to evaluate the effects of intercepted radiation(IP)and RUE on the above-ground biomass production,crop growth rate(CGR),and harvest index(HI),in four representative rice varieties,i.e.,Xiangyaxiangzhan(XYXZ),Meixiangzhan 2(MXZ2),Nanjingxiangzhan(NJXZ),and Ruanhuayoujinsi(RHYJS),during the early and late seasons of rice cultivation in South China.The results revealed that grain yield in the early season was 8.2%higher than in the late season.The yield advantage in the early season was primarily due to higher spikelets per panicle and above-ground biomass resulting from a higher RUE.The spikelets per panicle in the early season were 6.5,8.3,6.9,and 8.5%higher in XYXZ,MXZ2,NJXZ,and RHYJS,respectively,than in the late season.The higher early season grain yield was more closely related to RUE in the middle tillering stage(R^(2)=0.34),panicle initiation(R^(2)=0.16),and maturation stage(R^(2)=0.28),and the intercepted photosynthetically active radiation(IPAR)in the maturation stage(R^(2)=0.28),while the late season grain yield was more dependent on IPAR in the middle tillering stage(R^(2)=0.31)and IPAR at panicle initiation(R^(2)=0.23).The results of this study conclusively show that higher RUE contributes to the yield progress of early season rice,while the yield improvement of late season rice is attributed to higher radiation during the early reproductive stage.Rationally allocating the RUE of double-cropping rice with high RUE varieties or adjustments of the sowing period merits further study.展开更多
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ...The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.展开更多
In this study,we put forward a radiative-convective-transportive energy balance model of a gray atmosphere to examine individual roles of the greenhouse effect of water vapor,vertical convection,and atmospheric polewa...In this study,we put forward a radiative-convective-transportive energy balance model of a gray atmosphere to examine individual roles of the greenhouse effect of water vapor,vertical convection,and atmospheric poleward energy transport as well as their combined effects for a quasi-linear relationship between the outgoing longwave radiation(OLR)and surface temperature(T_(S)).The greenhouse effect of water vapor enhances the meridional gradient of surface temperature,thereby directly contributing to a quasi-linear OLR-T_(S) relationship.The atmospheric poleward energy transport decreases the meridional gradient of surface temperature.As a result of the poleward energy transport,tropical(high-latitude)atmosphere-surface columns emit less(more)OLR than the solar energy input at their respective locations,causing a substantial reduction of the meridional gradient of the OLR.The combined effect of reducing the meridional gradients of both OLR and surface temperature by the poleward energy transport also contributes to the quasi-linear OLR-T_(S) relationship.Vertical convective energy transport reduces the meridional gradient of surface temperature without affecting the meridional gradient of OLR,thereby suppressing part of the reduction to the increasing rate of OLR with surface temperature by the greenhouse effect of water vapor and poleward energy transport.Because of the nature of the energy balance in the climate system,such a quasi-linear relationship is also a good approximation for the relationship between the annual-mean net downward solar energy flux at the top of the atmosphere and surface temperature.展开更多
Microseism,acoustic emission and electromagnetic radiation(M-A-E)data are usually used for predicting rockburst hazards.However,it is a great challenge to realize the prediction of M-A-E data.In this study,with the ai...Microseism,acoustic emission and electromagnetic radiation(M-A-E)data are usually used for predicting rockburst hazards.However,it is a great challenge to realize the prediction of M-A-E data.In this study,with the aid of a deep learning algorithm,a new method for the prediction of M-A-E data is proposed.In this method,an M-A-E data prediction model is built based on a variety of neural networks after analyzing numerous M-A-E data,and then the M-A-E data can be predicted.The predicted results are highly correlated with the real data collected in the field.Through field verification,the deep learning-based prediction method of M-A-E data provides quantitative prediction data for rockburst monitoring.展开更多
Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has...Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure.展开更多
基金Project partially supported by the National Basic Research Program of China (Grant Nos.2011CB808404 and 2009CB939703)the National Natural Science Foundation of China (Grant Nos.60825403,90607022,and 61001043)
文摘We report on a micro-Raman investigation of inducing defects in mono-layer, hi-layer and tri-layer graphene by γ ray radiation. It is found that the radiation exposure results in two-dimensional (2D) and G band position evolution with the layer number increasing and D and D~ bands rising, suggesting the presence of defects and related crystal lattice deformation in graphene. Bi-layer graphene is more stable than mono- and tri-layer graphene, indicating that the former is a better candidate in the application of radiation environments. Also, the DC electrical property of the mono-layer graphene device shows that the defects increase the carrier density.
文摘Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金Research of the photoelectric properties of theκ(ε)-Ga_(2)O_(3)films was supported by the Russian Science Foundation,grant number 20-79-10043-P.Fabrication of the ultraviolet detectors based on theκ(ε)-Ga_(2)O_(3)layers was supported by the grant under the Decree of the Government of the Rus-sian Federation No.220 of 09 April 2010(Agreement No.075-15-2022-1132 of 01 July 2022)Research of the structural prop-erties of theκ(ε)-Ga_(2)O_(3)was supported by the St.Petersburg State University,grant number 94034685.
文摘High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.
基金Supported by The Science and Technology Plan Project of Guangzhou,No.202102010171National Natural Science Foundation。
文摘BACKGROUND Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis.Postoperative adjuvant external radiation therapy(RT)has been shown to effectively prevent recurrence after liver cancer resection.However,there are multiple RT techniques available,and the differ-ential effects of these techniques in preventing postoperative liver cancer re-currence require further investigation.AIM To assess the advantages and disadvantages of various adjuvant external RT methods after liver resection based on overall survival(OS)and disease-free survival(DFS)and to determine the optimal strategy.METHODS This study involved network meta-analyses and followed the PRISMA guidelines.The data of qualified studies published before July 10,2023,were collected from PubMed,Embase,the Web of Science,and the Cochrane Library.We included relevant studies on postoperative external beam RT after liver resection that had OS and DFS as the primary endpoints.The magnitudes of the effects were determined using risk ratios with 95%confidential intervals.The results were analyzed using R software and STATA software.RESULTS A total of 12 studies,including 1265 patients with hepatocellular carcinoma(HCC)after liver resection,were included in this study.There was no significant heterogeneity in the direct paired comparisons,and there were no significant differences in the inclusion or exclusion criteria,intervention measures,or outcome indicators,meeting the assumptions of heterogeneity and transitivity.OS analysis revealed that patients who underwent stereotactic body radiotherapy(SBRT)after resection had longer OS than those who underwent intensity modulated radiotherapy(IMRT)or 3-dimensional conformal RT(3D-CRT).DFS analysis revealed that patients who underwent 3D-CRT after resection had the longest DFS.Patients who underwent IMRT after resection had longer OS than those who underwent 3D-CRT and longer DFS than those who underwent SBRT.CONCLUSION HCC patients who undergo liver cancer resection must consider distinct advantages and disadvantages when choosing between SBRT and 3D-CRT.IMRT,a RT technique that is associated with longer OS than 3D-CRT and longer DFS than SBRT,may be a preferred option.
基金supported by the Russian Science Foundation(Grant No.18-72-10137)。
文摘Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently proposed to reduce radiation divergence being a representative example [Opt. Lett. 45 5416(2020)]. We present a rigorous approach that allows for an analytical description of the electromagnetic processes that occur when the structure is excited by a single waveguide TM mode. In other words, the corresponding canonical waveguide diffraction problem is solved in a rigorous formulation. This is a continuation of our previous papers which considered simpler cases with a homogeneous or two-layer dielectric filling. Here we use the same analytical approach based on the Wiener–Hopf–Fock technique and deal with the more complicated case of a three-layer dielectric lining. Using the obtained rigorous solution, we discuss the possibility of manipulating the far-field radiation pattern using a third layer made of a low permittivity material.
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
基金supported by the National Natural Science Foundation of China(No.62227901)。
文摘To elucidate the characteristics and mechanism of electromagnetic radiation in granite under impact loading,based on the quasi-static compression tests,this paper conducts dynamic compression experiments on granite using Hopkinson pressure bar and one-stage light-gas gun as loading methods.Combined with experimental and theoretical analyses,the relationship between mechanical and electromagnetic responses under impact loads of different intensities,and the time-domain signals of electromagnetic radiation generated by a single crack under different strain rates are studied.The intensity and frequency of electromagnetic radiation increase with the increasing compressive strain rate.According to the thermal activation theory,it reveals the microscopic mechanism of the transition from intergranular microcracks to transgranular microcracks in terms of strain sensitivity.It also serves as the physical basis for the increase in electromagnetic radiation intensity amplitude and frequency with increasing compressive strain rate.Transgranular microcracks are the primary cause of electromagnetic radiation generated by fractures.
文摘This article presents illustrations of an extended model of the electron to visualize how it spins and radiates in the external magnetic field. A time-varying magnetic field B produces a rotational induced electric field E which rotates (spins) the electron about its axis. In time-constant magnetic field: the electron radiates the cyclotron radiation. In time-varying magnetic field: synchrotron radiation is generated. The couplings between spin, acceleration and radiation will be discussed.
文摘In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to a constant and relativistic speed at a distance L from a perfectly conducting plane. The charge of the electron was represented by a spherical charge distribution located within the Compton wavelength of the electron. Subsequently, the electron is incident on the perfect conductor giving rise to transition radiation. The energy associated with the transition radiation depends on the parameter L. It was shown that an inequality satisfied by the vacuum energy density will emerge when the length L is pushed to cosmological dimensions and the product of the radiated energy, and the time duration of emission is constrained by Heisenberg’s uncertainty principle. In this paper, a similar analysis is conducted with a chain of electrons oscillating sinusoidally and located above a conducting plane. In the thought experiment presented in this paper, the behavior of the energy radiated by the chain of oscillating electrons is studied in the frequency domain as a function of the length L of the chain. It is shown that when the length L is pushed to cosmological dimensions and the energy radiated within a single burst of duration of half a period of oscillation is constrained by the fact that electromagnetic energy consists of photons, an inequality satisfied by the vacuum energy density emerges as a result. The derived inequality is given by where is the vacuum energy density. This result is consistent with the measured value of the vacuum energy density, which is 5.38 × 10<sup>-10</sup> J/m. The result obtained here is in better agreement with experimental data than the one obtained in Part I of this paper with time domain radiation.
文摘A COnstellation of Radiation BElt Survey(CORBES)program is proposed by the Sub-Group on Radiation Belt(SGRB)of TGCSS,COSPAR.To address the open qustions about the dynamics of the Earth’s radiation belt,CORBES mission would use a constellation of small/CubeSats to take an ultra-fast survey of the Earth’s radiation belt.The concept,science objectives and preliminary technical design of CORBES are introduced.This mission is an international multilateral cooperation mission coordinated by COSPAR.The SGRB Science Activities and COSPAR HQs Coordinate Activities on CORBES are summaried.
文摘The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of the media, the transition radiation is mainly determined by the properties of the surface layer. The possibility of using transition radiation to study the surface of substances is discussed. In addition, due to the hard radiation present in space, this research may be important for the use of light monoatomic layers as a material for satellite antennas, “solar sails” and cover layers in a future space (interstellar) mission.
基金National Natural Science Foundation of China(No.12205360)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-010).
文摘This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.
基金supported by the National Natural Science Foundation of China (Grant No.11672278)。
文摘In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions were obtained.The diameter of the projectile is 3-5 mm,the impact velocity is 3.13-6.58 km/s,and the chamber pressure is 0.56-990 Pa.The spectrum of ejected debris cloud in the 250-310 nm band were obtained using a transient spectral measurement system and a multi-channel radiometer measurement system.The test results reveal that the flash radiation intensity increases as a power function with the kinetic energy of the impact.Furthermore,the peak value of the line spectrum decreases as the chamber vacuum degree increases,while the radiation width gradually expands.The line spectrum in the spectral characterization curve corresponds to the ejected debris clouds splitting phase,which does not produce significant line spectrum during material fragmentation and is dominated by the continuum spectrum produced by blackbody radiation.There will appear one or three characteristic peaks in the flash radiation time curve,the first and second peaks correspond to the penetration phase and the third peak corresponds to the expansion phase of the ejected debris clouds on the time scale,the first and second peaks are more sensitive to the chamber vacuum degree,and when the pressure is higher than 99 Pa,the first and second characteristic peaks will disappear.The radiant heat attenuation of the flash under different impact conditions is significantly different,the attenuation exponent has a power function relationship with the impact velocity and the chamber vacuum degree,while the attenuation exponent has a linear relationship with the diameter of the projectile,the specific expression of the attenuation exponent is obtained by fitting.The findings from this research can serve as a valuable reference for remote diagnostic technologies based on flash radiation characteristics.
基金funded by the National Natural Science Foundation of China(31971843)the Modern Agroindustrial Technology System of Guangdong Province,China(2021KJ105)the Guangzhou Science and Technology Project,China(202103000075 and 202102100008)。
文摘Double-cropping rice in South China continues to break the total yield record,but the yield potential of singlecropping rice is not being realized.Radiation use efficiency(RUE)has been singled out as an important determinant of grain yield in many cereal species.However,there is no information on whether the yield gaps in doublecropping rice involve differences in RUE.Field experiments were performed over two years to evaluate the effects of intercepted radiation(IP)and RUE on the above-ground biomass production,crop growth rate(CGR),and harvest index(HI),in four representative rice varieties,i.e.,Xiangyaxiangzhan(XYXZ),Meixiangzhan 2(MXZ2),Nanjingxiangzhan(NJXZ),and Ruanhuayoujinsi(RHYJS),during the early and late seasons of rice cultivation in South China.The results revealed that grain yield in the early season was 8.2%higher than in the late season.The yield advantage in the early season was primarily due to higher spikelets per panicle and above-ground biomass resulting from a higher RUE.The spikelets per panicle in the early season were 6.5,8.3,6.9,and 8.5%higher in XYXZ,MXZ2,NJXZ,and RHYJS,respectively,than in the late season.The higher early season grain yield was more closely related to RUE in the middle tillering stage(R^(2)=0.34),panicle initiation(R^(2)=0.16),and maturation stage(R^(2)=0.28),and the intercepted photosynthetically active radiation(IPAR)in the maturation stage(R^(2)=0.28),while the late season grain yield was more dependent on IPAR in the middle tillering stage(R^(2)=0.31)and IPAR at panicle initiation(R^(2)=0.23).The results of this study conclusively show that higher RUE contributes to the yield progress of early season rice,while the yield improvement of late season rice is attributed to higher radiation during the early reproductive stage.Rationally allocating the RUE of double-cropping rice with high RUE varieties or adjustments of the sowing period merits further study.
基金supported by the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds for the Central Universities(No.2021ZDPY0211)+2 种基金the Graduate Innovation Program of China University of Mining and Technology(No.2023WLKXJ046)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2811)the Project of Liaoning Provincial Department of Education(No.JYTMS20231458).
文摘The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.
基金part supported by grants from the National Natural Science Foundation of China(Grant Nos.42222502 and 42075028)grants from the National Science Foundation(AGS-2032542 and AGS-2202875)。
文摘In this study,we put forward a radiative-convective-transportive energy balance model of a gray atmosphere to examine individual roles of the greenhouse effect of water vapor,vertical convection,and atmospheric poleward energy transport as well as their combined effects for a quasi-linear relationship between the outgoing longwave radiation(OLR)and surface temperature(T_(S)).The greenhouse effect of water vapor enhances the meridional gradient of surface temperature,thereby directly contributing to a quasi-linear OLR-T_(S) relationship.The atmospheric poleward energy transport decreases the meridional gradient of surface temperature.As a result of the poleward energy transport,tropical(high-latitude)atmosphere-surface columns emit less(more)OLR than the solar energy input at their respective locations,causing a substantial reduction of the meridional gradient of the OLR.The combined effect of reducing the meridional gradients of both OLR and surface temperature by the poleward energy transport also contributes to the quasi-linear OLR-T_(S) relationship.Vertical convective energy transport reduces the meridional gradient of surface temperature without affecting the meridional gradient of OLR,thereby suppressing part of the reduction to the increasing rate of OLR with surface temperature by the greenhouse effect of water vapor and poleward energy transport.Because of the nature of the energy balance in the climate system,such a quasi-linear relationship is also a good approximation for the relationship between the annual-mean net downward solar energy flux at the top of the atmosphere and surface temperature.
基金supported by the National Natural Science Foundation of China(Grant No.51934007)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220691).
文摘Microseism,acoustic emission and electromagnetic radiation(M-A-E)data are usually used for predicting rockburst hazards.However,it is a great challenge to realize the prediction of M-A-E data.In this study,with the aid of a deep learning algorithm,a new method for the prediction of M-A-E data is proposed.In this method,an M-A-E data prediction model is built based on a variety of neural networks after analyzing numerous M-A-E data,and then the M-A-E data can be predicted.The predicted results are highly correlated with the real data collected in the field.Through field verification,the deep learning-based prediction method of M-A-E data provides quantitative prediction data for rockburst monitoring.
基金Project supported by the National Key Research and Development Program of China (Grant No.2020YFA0211400)the State Key Program of the National Natural Science Foundation of China (Grant No.11834008)+3 种基金the National Natural Science Foundation of China (Grant Nos.12174192 and 12204119)the Fund from the State Key Laboratory of Acoustics,Chinese Academy of Sciences (Grant No.SKLA202210)the Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences (Grant No.SSHJ-KFKT-1701)the Science and Technology Foundation of Guizhou Province,China (Grant No.ZK[2023]249)。
文摘Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure.