Volumetric fraction distribution measurement is a constituent part of process tomography system in oil-water-gas multiphase flow. With the technological development of nuclear radial inspection, dual-energy γ-ray tec...Volumetric fraction distribution measurement is a constituent part of process tomography system in oil-water-gas multiphase flow. With the technological development of nuclear radial inspection, dual-energy γ-ray techniques make it possible to investigate the concentration of the different components on the cross-section of oil-water-gas multiphase pipe-flow. The dual-energy gamma-ray technique is based on materials attenuation coefficients measurement comprised of two radioactive isotopes of 241Am and 241Cs which have emission energies at 59.5 keV and 662 keV in this project. Nuclear instruments and data acquisition system were designed to measure the material’s attenuation dose rate and a number of static tests were conducted at the Multiphase Laboratory, Institute of Mechanics, Chinese Academy of Sciences. Three phases of oil-water-gas media were inves- tigated for their possible use to simulate different media volumetric fraction distributions in experimental vessels. Attenuation intensities were measured, and the arithmetic of linear attenuation coefficients and the equations of volumetric fractions were studied. Investigation of an unexpected measurement error from attenuation equations revealed that a modified arithmetic was involved and finally the system achieved acceptable accuracy in experimental research.展开更多
Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized b...Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffractometry(XRD) and energy dispersive X-ray micro analysis(EDS) techniques.The XPS results showed that there was only Au0 on the surface of catalysts.The XRD patterns showed that Au was presumably highly dispersed over γ-Al2O3.The temperatures for complete conversion of methanol,ethanol,iso-propanol and n-propanol with concentration of 2.0 g/m3 were 60,155,170 and 137 ℃,respectively,but they were completely mineralized into CO2 and H2O at 60,220,260 and 217 ℃ respectively over the optimized catalyst.The activity of the catalyst was stable in 130 h.The kinetics for the catalytic methanol elimination followed quasi-first order reaction expressed as r=0.652 8c0+0.084 2.The value of apparent activation energy is 54.7 kJ/mol in the range of reaction temperature.展开更多
This study focused on the identification of the filamentous fungi associated with soapstone samples exposed to outdoor conditions and the biocidal effect of gamma radiations on isolated fungal populations in Minas Ger...This study focused on the identification of the filamentous fungi associated with soapstone samples exposed to outdoor conditions and the biocidal effect of gamma radiations on isolated fungal populations in Minas Gerais State in Brazil. Two soapstone blocks were placed outdoors under tropical environmental conditions for 12 months. A total of 9 filamentous fungal populations were identified on their surfaces, namely Acremomium (cf.) alternatum, Alternaria alternata, Aspergillusfumigatus, Calcarisporium (cf.) arbuscula, Cladosporium cladosporioides, Curvularia lunata, Epicoccum nigrum, Fusarium equiseti and Penicillium citrinum. The gamma radiation assay was then carried out as a test of biocidal action by exposing all fungal populations to the ionizing radiation. The results showed that only the C. cladosporioides species was resistant to this biocidal agent, since it was able to increase its population post exposure. Scanning electron microscopy images identified the microbial colonization on the soapstone blocks and the stone elementar composition was analyzed by energy dispersive X-ray spectrometry. After treatment, there was no structural and aesthetic alteration in the soapstone samples, and evidencing that gamma radiation can be used as a biocidal agent. However, the resistance of the black fungal population indicates caution in the choice of gamma irradiation as biocidal treatment.展开更多
文摘Volumetric fraction distribution measurement is a constituent part of process tomography system in oil-water-gas multiphase flow. With the technological development of nuclear radial inspection, dual-energy γ-ray techniques make it possible to investigate the concentration of the different components on the cross-section of oil-water-gas multiphase pipe-flow. The dual-energy gamma-ray technique is based on materials attenuation coefficients measurement comprised of two radioactive isotopes of 241Am and 241Cs which have emission energies at 59.5 keV and 662 keV in this project. Nuclear instruments and data acquisition system were designed to measure the material’s attenuation dose rate and a number of static tests were conducted at the Multiphase Laboratory, Institute of Mechanics, Chinese Academy of Sciences. Three phases of oil-water-gas media were inves- tigated for their possible use to simulate different media volumetric fraction distributions in experimental vessels. Attenuation intensities were measured, and the arithmetic of linear attenuation coefficients and the equations of volumetric fractions were studied. Investigation of an unexpected measurement error from attenuation equations revealed that a modified arithmetic was involved and finally the system achieved acceptable accuracy in experimental research.
基金Project supported by the Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education,China
文摘Au/γ-Al2O3 catalysts were prepared by deposition-precipitation method for the catalytic combustion of low concentration alcohol streams(methanol,ethanol,iso-propanol and n-propanol).The catalysts were characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffractometry(XRD) and energy dispersive X-ray micro analysis(EDS) techniques.The XPS results showed that there was only Au0 on the surface of catalysts.The XRD patterns showed that Au was presumably highly dispersed over γ-Al2O3.The temperatures for complete conversion of methanol,ethanol,iso-propanol and n-propanol with concentration of 2.0 g/m3 were 60,155,170 and 137 ℃,respectively,but they were completely mineralized into CO2 and H2O at 60,220,260 and 217 ℃ respectively over the optimized catalyst.The activity of the catalyst was stable in 130 h.The kinetics for the catalytic methanol elimination followed quasi-first order reaction expressed as r=0.652 8c0+0.084 2.The value of apparent activation energy is 54.7 kJ/mol in the range of reaction temperature.
文摘This study focused on the identification of the filamentous fungi associated with soapstone samples exposed to outdoor conditions and the biocidal effect of gamma radiations on isolated fungal populations in Minas Gerais State in Brazil. Two soapstone blocks were placed outdoors under tropical environmental conditions for 12 months. A total of 9 filamentous fungal populations were identified on their surfaces, namely Acremomium (cf.) alternatum, Alternaria alternata, Aspergillusfumigatus, Calcarisporium (cf.) arbuscula, Cladosporium cladosporioides, Curvularia lunata, Epicoccum nigrum, Fusarium equiseti and Penicillium citrinum. The gamma radiation assay was then carried out as a test of biocidal action by exposing all fungal populations to the ionizing radiation. The results showed that only the C. cladosporioides species was resistant to this biocidal agent, since it was able to increase its population post exposure. Scanning electron microscopy images identified the microbial colonization on the soapstone blocks and the stone elementar composition was analyzed by energy dispersive X-ray spectrometry. After treatment, there was no structural and aesthetic alteration in the soapstone samples, and evidencing that gamma radiation can be used as a biocidal agent. However, the resistance of the black fungal population indicates caution in the choice of gamma irradiation as biocidal treatment.