The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential...The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential scanning calorimetry. The results show that a fine microstructure of the as-cast alloy can be obtained by solidifying through the β phase. γ grains can nucleate directly from the β phase. The coexistence of β phase and γ phase along primary α grain boundaries contributes to the decrease in the grain size of the as-cast alloy. The phase transformation sequence during solidification of the Ti-43Al-4Nb alloy is suggested as L→L+β→β→α+β→α+βr→α+γ+βr→lamellae(α2+γ)+γ+βr. The microstructure of the alloy after heat treatment at 1 250 ℃ for 16 h exhibits a certain coarsening compared with that of the as-cast state. The remnant β phase can be removed by the heat treatment process due to the diffusion of Nb and the non-equilibrium state of β phase.展开更多
Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects i...Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects intracortical excitation-inhibition balance is not clear. To explore this issue, we used Nissl staining and immunohistochemical methods as well as Image-Pro Express software to examine the density of Nissl-stained neurons, Glutamie acid-immunoreactive (Glu-IR) neurons and T-Aminobutyric acid-immunoreactive (GABA-IR) neurons in the primary visual cortex of young adult and aged cats. The results showed that there was no significant difference in the density of Nissl-stained neurons between young and old cats (2〉0.05). However, the density of Glu-IR neurons and GABA-IR neurons in the primary visual cortex of aged cats was significantly lower than that of young ones (P〈0.01). The ratio between Glu-IR neurons and GABA-IR neurons was significantly increased in old cats compared to that in young adult ones (P〈0.01). These results indicated that the effect of excitatory transmitter system in the old visual cortex was increased relative to the inhibitory transmitter system, which might cause an imbalance between cortical excitation and inhibition and might be an important factor mediating the visual function decline during aging.展开更多
Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral sub...Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral subiculum, which play a critical role in the reinstatement of drug-seeking behavior induced by environmental cues. Methods Conditioning place preference (CPP) and conditioning place aversion (CPA) models were used to establish environment associated with rewarding and aversive properties of morphine respectively. Microdialysis and high performance liquid chromatography were used to measure the extracelluar level of glutamate and GABA in the ventral subiculum under these environmental cues. Results Exposure to the environmental cues associated with rewarding properties of morphine resulted in a decrease (approximately 11%) of extracellular level of GABA in ventral subiculum, and exposure to the environmental cues associated with aversive properties of morphine resulted in an increase (approximately 230%) of extracellular level of glutamate in ventral subiculum. Conclusion Environmental cues associated with different properties of morphine modulate the release of distinct neurotransmitters in the hippocampal ventral subiculum possibly through different neural circuit.展开更多
Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Me...Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Methods After GABA or the GABAA-receptor antagonist, bicuculline (Bic), was injected into cerebral ventricles or NAc, right sciatic nerve was stimulated by electrical pulses, which was considered as traumatic pain stimulation. Extracellular recordings methods were used to record the electric activities of PEN in NAc. Results When GABA was injected into intracerebroventricle (ICV) as well as NAc, it could decrease the pain-evoked discharge frequency and prolong the latency of PEN. Bic could interdict the above effects of GABA on the electric activities of PEN. Conclusion Exogenous GABA might have an inhibitory effect on the central pain adjustment. Furthermore, GABA and GABAA receptor participate and mediate the traumatic information transmission process in CNS.展开更多
Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE...Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.展开更多
γ-aminobutyric acid (GABA) is an inhibitory neurotransmitter in adult mammalian central nervous system (CNS). During CNS development, the role of GABA is switched from an excitatory transmitter to an inhibitory t...γ-aminobutyric acid (GABA) is an inhibitory neurotransmitter in adult mammalian central nervous system (CNS). During CNS development, the role of GABA is switched from an excitatory transmitter to an inhibitory transmitter, which is caused by an inhibition of calcium influx into postsynaptic neuron derived from release of GABA. The switch is influenced by the neuronal chloride concentration. When the neuronal chloride concentration is at a high level, GABA acts as an excitatory neurotransmitter. When neuronal chloride concentration decreases to some degree, GABA acts as an inhibitory neurotransmitter. The neuronal chloride concentration is increased by Na^+-K^+-Cl^-Cl^- cotransporters 1 (NKCC 1), and decreased by K^+-Cl^- cotransporter 2 (KCC2).展开更多
Oxygen/glucose deprivation (OGD) has been widely used as an in vitro model of focal ischemia, where the blood flow is severely reduced and neurons rapidly die. However, adjacent to the focal region is ‘penumbra', ...Oxygen/glucose deprivation (OGD) has been widely used as an in vitro model of focal ischemia, where the blood flow is severely reduced and neurons rapidly die. However, adjacent to the focal region is ‘penumbra', where residual blood flow remains oxygen and glucose supplies are at low levels. To model this pathological genesis, we developed a partial OGD (pOGD) protocol in a rat brain slice. This model met two requirements: oxygen was partially deprived and glucose was reduced in the perfusion buffer. Therefore we investigated the effect of pOGD on gama-aminobutyric acid (GABAA) receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 neurons of a hippocampal slice through whole-cell patch-clamp technique. We found that the amplitude and decay time of IPSCs were increased immediately during pOGD treatment. And the enhancement of IPSCs amplitude resulted from an increase of the synaptic conductance without a significant change in the reversal potential of chloride. These results suggested that the nervous system could increase inhibitory neurotransmission to offset excitation by homeostasis mechanisms during the partial oxygen and glucose attack.展开更多
The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning tra...The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM).The crystals were grown by the floating zone (FZ) method.Both cuboidal and spherical γ' precipitates were formed after a two-step aging.The size of the cuboidal γ' phases first increased and then decreased with the extension of the second-step aging time.Re,Co and Cr strongly concentrated in the γ phase whereas Ni and Al enriched in the γ' phase.Thermodynamic calculation by JMatPro was performed to explain the experimental observations.展开更多
γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously...γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1), the present study explored the pathophysiological role of GAT1 in epileptogenesis. Though displaying no spontaneous seizure activity, these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid. In addition, the GABAA receptor and glutamate transporters are up-regulated in transgenic mice, which perhaps reflects a compensatory or corrective change to the elevated level of GAT1. These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission, and seizure susceptibility can be altered by neurotransmitter transporters.展开更多
The γ-TiAl based Ti.Al.Mn.Nb alloys with different Nb additions were fabricated by selective laser melting (SLM) on the TC4 substrate. The effects of Nb content on microstructure and properties of the alloys were inv...The γ-TiAl based Ti.Al.Mn.Nb alloys with different Nb additions were fabricated by selective laser melting (SLM) on the TC4 substrate. The effects of Nb content on microstructure and properties of the alloys were investigated. The results reveal that the alloys consist of γ-TiAl phase with tetragonal lattice structure and α2-Ti3Al phase with hcp lattice structure, and show a sequential structure change from near full dendrite to near lamellar structure with the increase of Nb addition. Owing to the higher Nb content in γ-TiAl phase and the formation of near lamellar structure, the alloy with 7.0 at.% Nb addition has the best combination of properties among the studied alloys, namely, not only a high hardness of HV 2000, a high strength of 1390 MPa and a plastic deformation of about 24.5%, but also good tribological properties and high-temperature oxidation resistance.展开更多
Fragile X syndrome (FXS) is one of the most prevalent mental retardations. It is mainly caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein and can regulate the transl...Fragile X syndrome (FXS) is one of the most prevalent mental retardations. It is mainly caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein and can regulate the translation of its binding RNA, thus regulate several signaling pathways. Many FXS patients show high susceptibility to epilepsy. Epilepsy is a chronic neurological disorder which is characterized by the recurrent appearance of spontaneous seizures due to neuronal hyperactivity in the brain. Both the abnormal activation of several signaling pathway and morphological abnormality that are caused by the loss of FMRP can lead to a high susceptibility to epilepsy. Combining with the research progresses on both FXS and epilepsy, we outlined the possible mechanisms of high susceptibility to epilepsy in FXS and tried to give a prospect on the future research on the mechanism of epilepsy that happened in other mental retardations.展开更多
γ-Aminobutyric acid and GABAergic receptors were previously reported to be distributed in reproductive systems besides CNS and predicted to participate in the modulation of testicular function. γ-Aminobutyric acid t...γ-Aminobutyric acid and GABAergic receptors were previously reported to be distributed in reproductive systems besides CNS and predicted to participate in the modulation of testicular function. γ-Aminobutyric acid transporter was implicated to be involved in this process. However, the potential role of γ-aminobutyric transporter in testis has not been explored. In this study, we investigated the existence of mouse γ-aminobutyric acid transporter subtype I (mGAT1) in testis. Wild-type and transgenic mice, which overexpressing mGAT1 in a variety of tissues, especially in testis, were primarily studied to approach the profile of mGAT1 in testis. Mice with overexpressed mGAT1 develop normally but with reduced mass and size of testis as compared with wild-type. Testicular morphology of transgenic mice exhibited overt abnormalities including focal damage of the spermatogenic epithelium accompanied by capillaries proliferation and increased diameter of seminiferous tubules lumen. Reduced number of spermatids was also found in some seminiferous tubules. Our results clearly demonstrate the presence of GAT1 in mouse testis and imply that GAT1 is possibly involved in testicular function.展开更多
Some recent studies indicated that GABAergic system is involved in mammalian sperm acrosome reaction (AR), but direct evidence pertaining to the expression of gat1 in mammalian sperm is not yet demonstrated. In this s...Some recent studies indicated that GABAergic system is involved in mammalian sperm acrosome reaction (AR), but direct evidence pertaining to the expression of gat1 in mammalian sperm is not yet demonstrated. In this study, we evaluated the presence of 67kDa GAT1 protein and mRNA in rat testis by Western blotting and reverse transcription-polymerase chain reaction. Meanwhile, immunohistochemical and immunofluorescent analyses also identified GAT1 protein on the elongated spermatid and sperm. These results indicated that rat testis is a novel site of gat1 expression. Further studies should be taken to explore the role of GAT1 protein on sperm acrosome reaction.展开更多
AIM: To investigate the role of endogenous γ-aminobutyric acid (GABA) in pancreatic exocrine secretion. METHODS: The isolated, vascularly perfused rat pancreas was employed in this study to eliminate the possible...AIM: To investigate the role of endogenous γ-aminobutyric acid (GABA) in pancreatic exocrine secretion. METHODS: The isolated, vascularly perfused rat pancreas was employed in this study to eliminate the possible influences of extrinsic nerves and hormones. Cholecystokinin (CCK; 10 pmol/L) was intra-arterially given to stimulate exocrine secretion of the pancreas. RESULTS: Glutamine, a major precursor of GABA, which was given intra-arterially at concentrations of 1, 4 and 10 mmol/L, dose-dependently elevated the CCK-stimulated secretions of fluid and amylase in the normal pancreas. Bicuculline (10 μmol/L), a GABAA receptor antagonist, blocked the enhancing effect of glutamine (4 mmol/L) on the CCK-stimulated exocrine secretions. Glutamine, at concentrations of 1, 4 and 10 mmol/L, dose-dependently increased the GABA concentration in portal effluent of the normal pancreas. The effects of glutamine on the CCK-stimulated exocrine secretion as well as the GABA secretion were markedly reduced in the streptozotocintreated pancreas. CONCLUSION: GABA could be secreted from β-cells into the isletoacinar portal system after administration of glutainine, and could enhance the CCK-stimulated exocrine secretion through GABAA receptors. Thus, GABA in islet β-cells is a hormone modulating pancreatic exocrine secretion.展开更多
Methods to optimize the production of gamma-aminobutyric acid (GABA) by Lactobacillus brevis CGMCC 1306 were investigated. Results indicated that cell growth was maximal at pH 5.0, while pH 4.5 was pref-erable to GA...Methods to optimize the production of gamma-aminobutyric acid (GABA) by Lactobacillus brevis CGMCC 1306 were investigated. Results indicated that cell growth was maximal at pH 5.0, while pH 4.5 was pref-erable to GABA formation. The optimal temperature for cell growth (35 °C) was lower than that for GABA forma-tion (40 °C). In a two-stage pH and temperature control fermentation, cultures were maintained at pH 5.0 and 35 °C for 32 h, then adjusted to pH 4.5 and 40 °C, GABA production increased remarkably and reached 474.79 mmol·L-1 at 72 h, while it was 398.63 mmol·L-1 with one stage pH and temperature control process, in which cultivation con-ditions were constantly controlled at pH 5.0 and 35 °C. In order to avoid the inhibition of cell growth at higher L-monosodium glutamate (L-MSG) concentrations, the two-stage control fermentation with substrate feeding strat-egy was applied to GABA production, with 106.87 mmol (20 g) L-MSG supplemented into the shaking-flask at 32 h and 56 h post-inoculation separately. The GABA concentration reached 526.33 mmol·L-1 at 72 h with the fer-mentation volume increased by 38%. These results will provide primary data to realize large-scale production of GABA by L. brevis CGMCC 1306.展开更多
Two metabolites (A and B) were isolated from the mycelium of mangrove endophytic fungus Stysanus like sp. (#2492) from the South China Sea. Their structures were identified by spectral data as N-(2-hydroxytetraco...Two metabolites (A and B) were isolated from the mycelium of mangrove endophytic fungus Stysanus like sp. (#2492) from the South China Sea. Their structures were identified by spectral data as N-(2-hydroxytetracosyl)-2-amino-1,3,4-trihydroxyoctadecane (A) and γ -stearolactone (B). It is the first report that γ -stearolactone (B) is isolated from marine fungus as natural product.展开更多
Objective To investigate the roles of the y-aminobutyric acid (GABA) in the metastasis of hepatocellular carcinoma (HCC) and to explore the potential of a novel therapeutic approach for the treatment of HCC. Metho...Objective To investigate the roles of the y-aminobutyric acid (GABA) in the metastasis of hepatocellular carcinoma (HCC) and to explore the potential of a novel therapeutic approach for the treatment of HCC. Methods The expression levels of GABA receptor subunit genes in various HCC cell lines and patients' tissues were detected by quantitative real-time polymerase chain reaction and Western blot analysis. Transwell cell migration and invasion assays were carried out for functional analysis. The effects of GABA on liver cancer cell cytoskeletal were determined by immunofluorescence staining. And the effects of GABA on HCC metastasis in nude mice were evaluated using an in vivo orthotopic model of liver cancer. Results The mRNA level of GABA receptor subunits varied between the primary hepatocellular carcinoma tissue and the adjacent non-tumor liver tissue. GABA inhibited human liver cancer cell migration and invasion via the ionotropic GABAA receptor as a result of the induction of liver cancer cell cytoskeletal reorganization. Pretreatment with GABA also significantly reduced intrahepatic liver metastasis and primary tumor formation in vivo. Conclusions These findings introduce a potential and novel therapeutic approach for the treatment of cancer patients based on the modulation of the GABAergic system.展开更多
AIM: To investigate the function of gamma-aminobutyric acid (GABA) and gamma-aminobutyric acid A receptor θ subunit (GABRQ) in hepatocellular carcinoma (HCC). METHODS: Semiquantitative polymerase chain reaction was u...AIM: To investigate the function of gamma-aminobutyric acid (GABA) and gamma-aminobutyric acid A receptor θ subunit (GABRQ) in hepatocellular carcinoma (HCC). METHODS: Semiquantitative polymerase chain reaction was used for detecting the expression of GABRQ receptor among HCC cell line HepG2, normal liver cell line L-02, non-malignant Chang's liver cells, 8 samples of HCC tissues and paired non-cancerous tissues. HepG2 cells were treated with GABA at serial concentrations (0, 1, 10, 20, 40 and 60 μmol/L), and their proliferating abilities were analyzed with the methyl thiazolyl tetrazolium assay, cell cycle analysis and tumor implanted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRQ in HepG2. Proliferating abilities of these cells treated with or without GABA were analyzed. RESULTS: We identified the overexpression of GABRQ in HCC cell lines and half of the tested HCC tissues. Knockdown of endogenous GABRQ expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We studied the effect of GABA in the proliferation of GABRQ-positive cell lines in vitro and in vivo , and found that GABA increased HCC growth in a dosedependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRQ-expressing HepG2 cells, but not GABRQ-knockdown HepG2 cells, which means that GABA stimulates HepG2 cell growth through GABRQ. CONCLUSION: GABRQ play important roles in HCC development and progression and could be a promising molecular target for the development of new diagnostic and therapeutic strategies of HCC.展开更多
Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite ...Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite diversified across different animal phyla. However, the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive, and antagonistic interactions between GABA and glutamate signal transduction systems, in particular, have began to attract significant attention. In this review, we summarize the extant results on the origin and evolution of GABA and glutamate, as well as their receptors, and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors. We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT), a transport protein, which plays an important role in the GABA-glutamate "yin and yang" balanced regulation. Finally, based on current advances, we propose several potential directions of future research.展开更多
基金Project (14) supported by Postdoctoral Science Foundation of Central South University, ChinaProject (2008AA03A233) supported by the High-tech Research and Development Program of China
文摘The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential scanning calorimetry. The results show that a fine microstructure of the as-cast alloy can be obtained by solidifying through the β phase. γ grains can nucleate directly from the β phase. The coexistence of β phase and γ phase along primary α grain boundaries contributes to the decrease in the grain size of the as-cast alloy. The phase transformation sequence during solidification of the Ti-43Al-4Nb alloy is suggested as L→L+β→β→α+β→α+βr→α+γ+βr→lamellae(α2+γ)+γ+βr. The microstructure of the alloy after heat treatment at 1 250 ℃ for 16 h exhibits a certain coarsening compared with that of the as-cast state. The remnant β phase can be removed by the heat treatment process due to the diffusion of Nb and the non-equilibrium state of β phase.
基金Natural Science Fund of Anhui Province (070413138)Key Laboratory Foundation of Anhui Province for Researches on the Conservation and Utilization of Important Biological ResourceKey Laboratory Foundation for Universities and Colleges in Anhui
文摘Recent studies show that a reduced effect of inhibitory transmitter system in the visual cortex may underlie aged visual function degradation. Whether excitatory transmitter system changes with age and hence affects intracortical excitation-inhibition balance is not clear. To explore this issue, we used Nissl staining and immunohistochemical methods as well as Image-Pro Express software to examine the density of Nissl-stained neurons, Glutamie acid-immunoreactive (Glu-IR) neurons and T-Aminobutyric acid-immunoreactive (GABA-IR) neurons in the primary visual cortex of young adult and aged cats. The results showed that there was no significant difference in the density of Nissl-stained neurons between young and old cats (2〉0.05). However, the density of Glu-IR neurons and GABA-IR neurons in the primary visual cortex of aged cats was significantly lower than that of young ones (P〈0.01). The ratio between Glu-IR neurons and GABA-IR neurons was significantly increased in old cats compared to that in young adult ones (P〈0.01). These results indicated that the effect of excitatory transmitter system in the old visual cortex was increased relative to the inhibitory transmitter system, which might cause an imbalance between cortical excitation and inhibition and might be an important factor mediating the visual function decline during aging.
基金supported by the National Natural Science Foundation of China(No.30230130 and No.30400129)the Ministry of Science and Technology of China(No.2003CB515405,No.2005CB522406)+1 种基金the Program for Changjiang Scholars and Innovative Research Team of Ministry of Education of ChinaShanghai Municipal Commission for Science and Technology(No.06JC14008).
文摘Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral subiculum, which play a critical role in the reinstatement of drug-seeking behavior induced by environmental cues. Methods Conditioning place preference (CPP) and conditioning place aversion (CPA) models were used to establish environment associated with rewarding and aversive properties of morphine respectively. Microdialysis and high performance liquid chromatography were used to measure the extracelluar level of glutamate and GABA in the ventral subiculum under these environmental cues. Results Exposure to the environmental cues associated with rewarding properties of morphine resulted in a decrease (approximately 11%) of extracellular level of GABA in ventral subiculum, and exposure to the environmental cues associated with aversive properties of morphine resulted in an increase (approximately 230%) of extracellular level of glutamate in ventral subiculum. Conclusion Environmental cues associated with different properties of morphine modulate the release of distinct neurotransmitters in the hippocampal ventral subiculum possibly through different neural circuit.
基金the National Natural Science Foundation of China (No. 60601010)the Natural Science Foundation of Heilongjiang Province, China (No. D200606)+1 种基金the Postdoctoral Fund of Heilongjiang province, China (No. LBH-Z06110)the Scientific Re- search Fund of Educational Department of Heilongjiang Province, China (No. 11531112).
文摘Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Methods After GABA or the GABAA-receptor antagonist, bicuculline (Bic), was injected into cerebral ventricles or NAc, right sciatic nerve was stimulated by electrical pulses, which was considered as traumatic pain stimulation. Extracellular recordings methods were used to record the electric activities of PEN in NAc. Results When GABA was injected into intracerebroventricle (ICV) as well as NAc, it could decrease the pain-evoked discharge frequency and prolong the latency of PEN. Bic could interdict the above effects of GABA on the electric activities of PEN. Conclusion Exogenous GABA might have an inhibitory effect on the central pain adjustment. Furthermore, GABA and GABAA receptor participate and mediate the traumatic information transmission process in CNS.
文摘Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.
文摘γ-aminobutyric acid (GABA) is an inhibitory neurotransmitter in adult mammalian central nervous system (CNS). During CNS development, the role of GABA is switched from an excitatory transmitter to an inhibitory transmitter, which is caused by an inhibition of calcium influx into postsynaptic neuron derived from release of GABA. The switch is influenced by the neuronal chloride concentration. When the neuronal chloride concentration is at a high level, GABA acts as an excitatory neurotransmitter. When neuronal chloride concentration decreases to some degree, GABA acts as an inhibitory neurotransmitter. The neuronal chloride concentration is increased by Na^+-K^+-Cl^-Cl^- cotransporters 1 (NKCC 1), and decreased by K^+-Cl^- cotransporter 2 (KCC2).
文摘Oxygen/glucose deprivation (OGD) has been widely used as an in vitro model of focal ischemia, where the blood flow is severely reduced and neurons rapidly die. However, adjacent to the focal region is ‘penumbra', where residual blood flow remains oxygen and glucose supplies are at low levels. To model this pathological genesis, we developed a partial OGD (pOGD) protocol in a rat brain slice. This model met two requirements: oxygen was partially deprived and glucose was reduced in the perfusion buffer. Therefore we investigated the effect of pOGD on gama-aminobutyric acid (GABAA) receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 neurons of a hippocampal slice through whole-cell patch-clamp technique. We found that the amplitude and decay time of IPSCs were increased immediately during pOGD treatment. And the enhancement of IPSCs amplitude resulted from an increase of the synaptic conductance without a significant change in the reversal potential of chloride. These results suggested that the nervous system could increase inhibitory neurotransmission to offset excitation by homeostasis mechanisms during the partial oxygen and glucose attack.
基金Project(08dj1400402) supported by the Major Program for the Fundamental Research of Science and Technology Committee of the Shanghai Municipality,ChinaProject(09ZZ16) supported by Innovation Program of Shanghai Municipal Education Committee,China
文摘The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM).The crystals were grown by the floating zone (FZ) method.Both cuboidal and spherical γ' precipitates were formed after a two-step aging.The size of the cuboidal γ' phases first increased and then decreased with the extension of the second-step aging time.Re,Co and Cr strongly concentrated in the γ phase whereas Ni and Al enriched in the γ' phase.Thermodynamic calculation by JMatPro was performed to explain the experimental observations.
文摘γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1), the present study explored the pathophysiological role of GAT1 in epileptogenesis. Though displaying no spontaneous seizure activity, these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid. In addition, the GABAA receptor and glutamate transporters are up-regulated in transgenic mice, which perhaps reflects a compensatory or corrective change to the elevated level of GAT1. These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission, and seizure susceptibility can be altered by neurotransmitter transporters.
基金Project(51371041) supported by Chinese Scholarship Council and the National Natural Science Foundation of China
文摘The γ-TiAl based Ti.Al.Mn.Nb alloys with different Nb additions were fabricated by selective laser melting (SLM) on the TC4 substrate. The effects of Nb content on microstructure and properties of the alloys were investigated. The results reveal that the alloys consist of γ-TiAl phase with tetragonal lattice structure and α2-Ti3Al phase with hcp lattice structure, and show a sequential structure change from near full dendrite to near lamellar structure with the increase of Nb addition. Owing to the higher Nb content in γ-TiAl phase and the formation of near lamellar structure, the alloy with 7.0 at.% Nb addition has the best combination of properties among the studied alloys, namely, not only a high hardness of HV 2000, a high strength of 1390 MPa and a plastic deformation of about 24.5%, but also good tribological properties and high-temperature oxidation resistance.
文摘Fragile X syndrome (FXS) is one of the most prevalent mental retardations. It is mainly caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA binding protein and can regulate the translation of its binding RNA, thus regulate several signaling pathways. Many FXS patients show high susceptibility to epilepsy. Epilepsy is a chronic neurological disorder which is characterized by the recurrent appearance of spontaneous seizures due to neuronal hyperactivity in the brain. Both the abnormal activation of several signaling pathway and morphological abnormality that are caused by the loss of FMRP can lead to a high susceptibility to epilepsy. Combining with the research progresses on both FXS and epilepsy, we outlined the possible mechanisms of high susceptibility to epilepsy in FXS and tried to give a prospect on the future research on the mechanism of epilepsy that happened in other mental retardations.
基金grants from National Science Foundation!No.39630140
文摘γ-Aminobutyric acid and GABAergic receptors were previously reported to be distributed in reproductive systems besides CNS and predicted to participate in the modulation of testicular function. γ-Aminobutyric acid transporter was implicated to be involved in this process. However, the potential role of γ-aminobutyric transporter in testis has not been explored. In this study, we investigated the existence of mouse γ-aminobutyric acid transporter subtype I (mGAT1) in testis. Wild-type and transgenic mice, which overexpressing mGAT1 in a variety of tissues, especially in testis, were primarily studied to approach the profile of mGAT1 in testis. Mice with overexpressed mGAT1 develop normally but with reduced mass and size of testis as compared with wild-type. Testicular morphology of transgenic mice exhibited overt abnormalities including focal damage of the spermatogenic epithelium accompanied by capillaries proliferation and increased diameter of seminiferous tubules lumen. Reduced number of spermatids was also found in some seminiferous tubules. Our results clearly demonstrate the presence of GAT1 in mouse testis and imply that GAT1 is possibly involved in testicular function.
基金grants of National "Pan Deng" program LMCBand National Natural Science FOundation!No: 39770776
文摘Some recent studies indicated that GABAergic system is involved in mammalian sperm acrosome reaction (AR), but direct evidence pertaining to the expression of gat1 in mammalian sperm is not yet demonstrated. In this study, we evaluated the presence of 67kDa GAT1 protein and mRNA in rat testis by Western blotting and reverse transcription-polymerase chain reaction. Meanwhile, immunohistochemical and immunofluorescent analyses also identified GAT1 protein on the elongated spermatid and sperm. These results indicated that rat testis is a novel site of gat1 expression. Further studies should be taken to explore the role of GAT1 protein on sperm acrosome reaction.
基金Supported by the Hallym Academy of Sciences, Hallym University, Korea in 2001 (to HJ Park)
文摘AIM: To investigate the role of endogenous γ-aminobutyric acid (GABA) in pancreatic exocrine secretion. METHODS: The isolated, vascularly perfused rat pancreas was employed in this study to eliminate the possible influences of extrinsic nerves and hormones. Cholecystokinin (CCK; 10 pmol/L) was intra-arterially given to stimulate exocrine secretion of the pancreas. RESULTS: Glutamine, a major precursor of GABA, which was given intra-arterially at concentrations of 1, 4 and 10 mmol/L, dose-dependently elevated the CCK-stimulated secretions of fluid and amylase in the normal pancreas. Bicuculline (10 μmol/L), a GABAA receptor antagonist, blocked the enhancing effect of glutamine (4 mmol/L) on the CCK-stimulated exocrine secretions. Glutamine, at concentrations of 1, 4 and 10 mmol/L, dose-dependently increased the GABA concentration in portal effluent of the normal pancreas. The effects of glutamine on the CCK-stimulated exocrine secretion as well as the GABA secretion were markedly reduced in the streptozotocintreated pancreas. CONCLUSION: GABA could be secreted from β-cells into the isletoacinar portal system after administration of glutainine, and could enhance the CCK-stimulated exocrine secretion through GABAA receptors. Thus, GABA in islet β-cells is a hormone modulating pancreatic exocrine secretion.
基金Supported by the National'Naturai Science Foundation of China (30970638, 21176220 and 31240054), Zhejiang Provincial Natural Science Foundation (Z13B06008) and the National Basic Research Program of China (2007CB714305).
文摘Methods to optimize the production of gamma-aminobutyric acid (GABA) by Lactobacillus brevis CGMCC 1306 were investigated. Results indicated that cell growth was maximal at pH 5.0, while pH 4.5 was pref-erable to GABA formation. The optimal temperature for cell growth (35 °C) was lower than that for GABA forma-tion (40 °C). In a two-stage pH and temperature control fermentation, cultures were maintained at pH 5.0 and 35 °C for 32 h, then adjusted to pH 4.5 and 40 °C, GABA production increased remarkably and reached 474.79 mmol·L-1 at 72 h, while it was 398.63 mmol·L-1 with one stage pH and temperature control process, in which cultivation con-ditions were constantly controlled at pH 5.0 and 35 °C. In order to avoid the inhibition of cell growth at higher L-monosodium glutamate (L-MSG) concentrations, the two-stage control fermentation with substrate feeding strat-egy was applied to GABA production, with 106.87 mmol (20 g) L-MSG supplemented into the shaking-flask at 32 h and 56 h post-inoculation separately. The GABA concentration reached 526.33 mmol·L-1 at 72 h with the fer-mentation volume increased by 38%. These results will provide primary data to realize large-scale production of GABA by L. brevis CGMCC 1306.
文摘Two metabolites (A and B) were isolated from the mycelium of mangrove endophytic fungus Stysanus like sp. (#2492) from the South China Sea. Their structures were identified by spectral data as N-(2-hydroxytetracosyl)-2-amino-1,3,4-trihydroxyoctadecane (A) and γ -stearolactone (B). It is the first report that γ -stearolactone (B) is isolated from marine fungus as natural product.
基金supported by the Ministry of Health of China (No.2008ZX10002-022)the Doctoral Innovation Fund of Shanghai Cancer Institute(No.SB-09-02)
文摘Objective To investigate the roles of the y-aminobutyric acid (GABA) in the metastasis of hepatocellular carcinoma (HCC) and to explore the potential of a novel therapeutic approach for the treatment of HCC. Methods The expression levels of GABA receptor subunit genes in various HCC cell lines and patients' tissues were detected by quantitative real-time polymerase chain reaction and Western blot analysis. Transwell cell migration and invasion assays were carried out for functional analysis. The effects of GABA on liver cancer cell cytoskeletal were determined by immunofluorescence staining. And the effects of GABA on HCC metastasis in nude mice were evaluated using an in vivo orthotopic model of liver cancer. Results The mRNA level of GABA receptor subunits varied between the primary hepatocellular carcinoma tissue and the adjacent non-tumor liver tissue. GABA inhibited human liver cancer cell migration and invasion via the ionotropic GABAA receptor as a result of the induction of liver cancer cell cytoskeletal reorganization. Pretreatment with GABA also significantly reduced intrahepatic liver metastasis and primary tumor formation in vivo. Conclusions These findings introduce a potential and novel therapeutic approach for the treatment of cancer patients based on the modulation of the GABAergic system.
基金Supported by The Innovation Fund of Central South University, No. 234077231
文摘AIM: To investigate the function of gamma-aminobutyric acid (GABA) and gamma-aminobutyric acid A receptor θ subunit (GABRQ) in hepatocellular carcinoma (HCC). METHODS: Semiquantitative polymerase chain reaction was used for detecting the expression of GABRQ receptor among HCC cell line HepG2, normal liver cell line L-02, non-malignant Chang's liver cells, 8 samples of HCC tissues and paired non-cancerous tissues. HepG2 cells were treated with GABA at serial concentrations (0, 1, 10, 20, 40 and 60 μmol/L), and their proliferating abilities were analyzed with the methyl thiazolyl tetrazolium assay, cell cycle analysis and tumor implanted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRQ in HepG2. Proliferating abilities of these cells treated with or without GABA were analyzed. RESULTS: We identified the overexpression of GABRQ in HCC cell lines and half of the tested HCC tissues. Knockdown of endogenous GABRQ expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We studied the effect of GABA in the proliferation of GABRQ-positive cell lines in vitro and in vivo , and found that GABA increased HCC growth in a dosedependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRQ-expressing HepG2 cells, but not GABRQ-knockdown HepG2 cells, which means that GABA stimulates HepG2 cell growth through GABRQ. CONCLUSION: GABRQ play important roles in HCC development and progression and could be a promising molecular target for the development of new diagnostic and therapeutic strategies of HCC.
文摘Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite diversified across different animal phyla. However, the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive, and antagonistic interactions between GABA and glutamate signal transduction systems, in particular, have began to attract significant attention. In this review, we summarize the extant results on the origin and evolution of GABA and glutamate, as well as their receptors, and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors. We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT), a transport protein, which plays an important role in the GABA-glutamate "yin and yang" balanced regulation. Finally, based on current advances, we propose several potential directions of future research.