介绍将用于中国第一颗月球探测卫星主载荷之一的伽玛射线谱仪的结构设计, Monte Carlo模拟结果和原理样机性能测试结果等.该探测器采用CsI(T1)晶体作为闪烁体和反符合技术抑制本底,可探测的射线能量范围为0.3-9.0 MeV,仪器能量分辨率...介绍将用于中国第一颗月球探测卫星主载荷之一的伽玛射线谱仪的结构设计, Monte Carlo模拟结果和原理样机性能测试结果等.该探测器采用CsI(T1)晶体作为闪烁体和反符合技术抑制本底,可探测的射线能量范围为0.3-9.0 MeV,仪器能量分辨率是9.0%(662 keV).展开更多
Based on a dynamical Langevin equation coupled with a statistical decay model, we calculate the variation of the post-saddle giant dipole resonance (GDR) q-ray multiplicity of the heavy nuclei 24^240Cf, ^246Cf, ^252...Based on a dynamical Langevin equation coupled with a statistical decay model, we calculate the variation of the post-saddle giant dipole resonance (GDR) q-ray multiplicity of the heavy nuclei 24^240Cf, ^246Cf, ^252Cf and ^240U with the post-saddle friction strength (13). We find that the sensitivity of the post-saddle γ emission to β decreases considerably with increasing the neutron-to-proton ratio (N/Z) of the system. Moreover, for 240 U, the γ emission is no longer sensitive to 13. We suggest that to accurately obtain information of the post-saddle friction strength by measuring pre-scission GDR γ-ray multiplicities, it is optimal to choose among the various compound systems those with low N/Z.展开更多
The ground-based EAS array is usually operated with a high duty cycle (〉 90%) and a large field of view (- 2sr), which can continuously monitor the sky. It is essential and irreplaceable to understand the gamma-r...The ground-based EAS array is usually operated with a high duty cycle (〉 90%) and a large field of view (- 2sr), which can continuously monitor the sky. It is essential and irreplaceable to understand the gamma-ray emission mechanism and intrinsic physics progress of the variable source AGN. The EAS arrays, AS-y experiment (since 1990) and ARGO-YBJ experiment (since 2007), have continuously monitored the northern sky at energies above 3 TeV and 0.3 TeV, respectively. They have made substantial contributions for long-term monitoring of Mrk 421 and Mrk 501. In this paper, we will review the results obtained by the EAS arrays. The next generation of EAS array, LHAASO project, will boost the sensitivity of current EAS array at least up to 30 times with a much wider energy range from 40 GeV to 1 PeV. Beside increasing the number of VHE gamma-ray sources, it will guide us look sight into the properties of jet, and throw light on the determining of the EBL, intergalactic magnetic fields, and the validity of the Lorentz Invariance.展开更多
基金Supported by the Foundation of Nanjing University of Finance & Economics under Grant No. JGY1030
文摘Based on a dynamical Langevin equation coupled with a statistical decay model, we calculate the variation of the post-saddle giant dipole resonance (GDR) q-ray multiplicity of the heavy nuclei 24^240Cf, ^246Cf, ^252Cf and ^240U with the post-saddle friction strength (13). We find that the sensitivity of the post-saddle γ emission to β decreases considerably with increasing the neutron-to-proton ratio (N/Z) of the system. Moreover, for 240 U, the γ emission is no longer sensitive to 13. We suggest that to accurately obtain information of the post-saddle friction strength by measuring pre-scission GDR γ-ray multiplicities, it is optimal to choose among the various compound systems those with low N/Z.
基金the National Natural Science Foundation of China (Grant No. 11205165)the Xiejialin Fund of the Institute of High Energy Physics, Chinese Academy of Sciences (Grant No. Y3546140U2)
文摘The ground-based EAS array is usually operated with a high duty cycle (〉 90%) and a large field of view (- 2sr), which can continuously monitor the sky. It is essential and irreplaceable to understand the gamma-ray emission mechanism and intrinsic physics progress of the variable source AGN. The EAS arrays, AS-y experiment (since 1990) and ARGO-YBJ experiment (since 2007), have continuously monitored the northern sky at energies above 3 TeV and 0.3 TeV, respectively. They have made substantial contributions for long-term monitoring of Mrk 421 and Mrk 501. In this paper, we will review the results obtained by the EAS arrays. The next generation of EAS array, LHAASO project, will boost the sensitivity of current EAS array at least up to 30 times with a much wider energy range from 40 GeV to 1 PeV. Beside increasing the number of VHE gamma-ray sources, it will guide us look sight into the properties of jet, and throw light on the determining of the EBL, intergalactic magnetic fields, and the validity of the Lorentz Invariance.