The axial profile of gas holdups was measured using a γ-ray densitometry in the pressurized bubble column,0.3 m in diameter and 6.6 m in height.The principle of γ-ray measurement and data processing is discussed.The...The axial profile of gas holdups was measured using a γ-ray densitometry in the pressurized bubble column,0.3 m in diameter and 6.6 m in height.The principle of γ-ray measurement and data processing is discussed.The axial profile of gas holdups and its average value in two-phase system were obtained in the churn-turbulent flow regime with a gas velocity up to 0.40 m·s -1 and a system pressure up to 1.0 MPa, which are in agreement with results obtained by differential pressure method.The effects of superficial gas velocity, liquid surface tension, liquid viscosity and system pressure on the axial profile of gas holdups were investigated.It is shown that the gas holdup decreases with the increasing liquid viscosity and liquid surface tension, and increases with the increase of pressure and superficial gas velocity.展开更多
The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by usi...The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a sin- gle-energy γ-ray system is described. The γ-ray source is the radioactive isotope of 241Am with γ-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed γ-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.展开更多
文摘The axial profile of gas holdups was measured using a γ-ray densitometry in the pressurized bubble column,0.3 m in diameter and 6.6 m in height.The principle of γ-ray measurement and data processing is discussed.The axial profile of gas holdups and its average value in two-phase system were obtained in the churn-turbulent flow regime with a gas velocity up to 0.40 m·s -1 and a system pressure up to 1.0 MPa, which are in agreement with results obtained by differential pressure method.The effects of superficial gas velocity, liquid surface tension, liquid viscosity and system pressure on the axial profile of gas holdups were investigated.It is shown that the gas holdup decreases with the increasing liquid viscosity and liquid surface tension, and increases with the increase of pressure and superficial gas velocity.
基金Supported by National Natural Science Foundation of China (No. 10572143)
文摘The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a sin- gle-energy γ-ray system is described. The γ-ray source is the radioactive isotope of 241Am with γ-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed γ-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.