The effects of size distribution,morphology and volume fraction ofγ′phase and grain size on tensile properties of powder processed Ni-based superalloy were investigated by using two different quenching methods.Oil q...The effects of size distribution,morphology and volume fraction ofγ′phase and grain size on tensile properties of powder processed Ni-based superalloy were investigated by using two different quenching methods.Oil quenching and air cooling were adopted with cooling rate of 183°C/s and 4?15°C/s,respectively.The experimental results show that the average size of the secondaryγ′after oil quenching is 24.5 nm compared with 49.8 nm under air cooling,and corresponding volume fractions ofγ′are 29%and 34%,respectively.Meanwhile,the average grain size remains nearly equivalent from both oil-quenching and air-cooling specimens.The tensile strength at room temperature is higher for the oil-quenched specimen than the equivalent from the air-cooled specimen,but the difference approaches each other as the temperature increases to 650°C.The fractography clearly demonstrates that transgranular fracture governs the failure process at ambient temperature,in contrast to the intergranular fracture at 650°C or even higher temperature.These two mechanical responses indicate the strengthening effects ofγ′precipitates and grain boundary for polycrystalline Ni-based superalloys at different temperatures.展开更多
Based on a dynamical Langevin equation coupled with a statistical decay model, we calculate the variation of the post-saddle giant dipole resonance (GDR) q-ray multiplicity of the heavy nuclei 24^240Cf, ^246Cf, ^252...Based on a dynamical Langevin equation coupled with a statistical decay model, we calculate the variation of the post-saddle giant dipole resonance (GDR) q-ray multiplicity of the heavy nuclei 24^240Cf, ^246Cf, ^252Cf and ^240U with the post-saddle friction strength (13). We find that the sensitivity of the post-saddle γ emission to β decreases considerably with increasing the neutron-to-proton ratio (N/Z) of the system. Moreover, for 240 U, the γ emission is no longer sensitive to 13. We suggest that to accurately obtain information of the post-saddle friction strength by measuring pre-scission GDR γ-ray multiplicities, it is optimal to choose among the various compound systems those with low N/Z.展开更多
基金Project(2012AA03A514)supported by the National High-Tech Research and Development Program of ChinaProjects(2016YFB0700300,2016YFB0701404)supported by the National Key Research and Development Program of China
文摘The effects of size distribution,morphology and volume fraction ofγ′phase and grain size on tensile properties of powder processed Ni-based superalloy were investigated by using two different quenching methods.Oil quenching and air cooling were adopted with cooling rate of 183°C/s and 4?15°C/s,respectively.The experimental results show that the average size of the secondaryγ′after oil quenching is 24.5 nm compared with 49.8 nm under air cooling,and corresponding volume fractions ofγ′are 29%and 34%,respectively.Meanwhile,the average grain size remains nearly equivalent from both oil-quenching and air-cooling specimens.The tensile strength at room temperature is higher for the oil-quenched specimen than the equivalent from the air-cooled specimen,but the difference approaches each other as the temperature increases to 650°C.The fractography clearly demonstrates that transgranular fracture governs the failure process at ambient temperature,in contrast to the intergranular fracture at 650°C or even higher temperature.These two mechanical responses indicate the strengthening effects ofγ′precipitates and grain boundary for polycrystalline Ni-based superalloys at different temperatures.
基金Supported by the Foundation of Nanjing University of Finance & Economics under Grant No. JGY1030
文摘Based on a dynamical Langevin equation coupled with a statistical decay model, we calculate the variation of the post-saddle giant dipole resonance (GDR) q-ray multiplicity of the heavy nuclei 24^240Cf, ^246Cf, ^252Cf and ^240U with the post-saddle friction strength (13). We find that the sensitivity of the post-saddle γ emission to β decreases considerably with increasing the neutron-to-proton ratio (N/Z) of the system. Moreover, for 240 U, the γ emission is no longer sensitive to 13. We suggest that to accurately obtain information of the post-saddle friction strength by measuring pre-scission GDR γ-ray multiplicities, it is optimal to choose among the various compound systems those with low N/Z.