Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-...Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-redoping method in a neutral medium. The products were characterized by TEM, XRD, UV-Vis, four-probe method, and magnetometer. The results indicate that the electrical and magnetic properties of the nanocomposites strongly depend on γ-Fe 2O 3 content. With the increase of γ-Fe 2O 3 content, the electrical conductivity is decreased and saturation magnetization is increased.展开更多
The reduction behavior of Y-Al2O3 supported iron and platinum-iron catalysts was studied by TPR combined in situ 57Fe MBS. The results indicated that Fe3+ is highly dis-persed on the Y-Al2O3 surface for all the sample...The reduction behavior of Y-Al2O3 supported iron and platinum-iron catalysts was studied by TPR combined in situ 57Fe MBS. The results indicated that Fe3+ is highly dis-persed on the Y-Al2O3 surface for all the samples containing iron before the reduction. No Fe was found in the reduction process. The Fe3+ was reduced to Fe2+ in tetrahedral vacancy first in Pt-Fe/Y-Al2O3 sample in TPR process. The TPR processes of all supported iron samples are very different from those of α-Fe2O3.展开更多
文摘Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-redoping method in a neutral medium. The products were characterized by TEM, XRD, UV-Vis, four-probe method, and magnetometer. The results indicate that the electrical and magnetic properties of the nanocomposites strongly depend on γ-Fe 2O 3 content. With the increase of γ-Fe 2O 3 content, the electrical conductivity is decreased and saturation magnetization is increased.
文摘The reduction behavior of Y-Al2O3 supported iron and platinum-iron catalysts was studied by TPR combined in situ 57Fe MBS. The results indicated that Fe3+ is highly dis-persed on the Y-Al2O3 surface for all the samples containing iron before the reduction. No Fe was found in the reduction process. The Fe3+ was reduced to Fe2+ in tetrahedral vacancy first in Pt-Fe/Y-Al2O3 sample in TPR process. The TPR processes of all supported iron samples are very different from those of α-Fe2O3.