Volcanic oil and gas reservoirs are generally buried deep,which leads to a high whole-well coring cost,and the degree of development and size of reservoirs are controlled by volcanic facies.Therefore,accurately identi...Volcanic oil and gas reservoirs are generally buried deep,which leads to a high whole-well coring cost,and the degree of development and size of reservoirs are controlled by volcanic facies.Therefore,accurately identifying volcanic facies by logging curves not only provides the basis of volcanic reservoir prediction but also saves costs during exploration.The Songliao Basin is a‘fault-depression superimposed’composite basin with a typical binary filling structure.Abundant types of volcanic lithologies and facies are present in the Lishu fault depression.Volcanic activity is frequent during the sedimentary period of the Huoshiling Formation.Through systematic petrographic identification of the key exploratory well(SN165C)of the Lishu fault-depression,which is a whole-well core,it is found that the Huoshiling Formation in SN165C contains four facies and six subfacies,including the volcanic conduit facies(crypto explosive breccia subfacies),explosive facies(pyroclastic flow and thermal wave base subfacies),effusive facies(upper and lower subfacies),and volcanogenic sedimentary facies(pyroclastic sedimentary subfacies).Combining core,thin section,and logging data,the authors established identification markers and petrographic chart logging phases,and also interpreted the longitudinal variation in volcanic petro-graphic response characteristics to make the charts more applicable to this area's volcanic petrographic interpretation of the Huoshiling Formation.These charts can provide a basis for the further exploration and development of volcanic oil and gas in this area.展开更多
Forests promote the conservation of biodiversity and also play a crucial role in safeguarding theenvironment against erosion,landslides,and climate change.However,illegal logging remains a significant threatworldwide,...Forests promote the conservation of biodiversity and also play a crucial role in safeguarding theenvironment against erosion,landslides,and climate change.However,illegal logging remains a significant threatworldwide,necessitating the development of automatic logging detection systems in forests.This paper proposesthe use of long-range,low-powered,and smart Internet of Things(IoT)nodes to enhance forest monitoringcapabilities.The research framework involves developing IoT devices for forest sound classification andtransmitting each node’s status to a gateway at the forest base station,which further sends the obtained datathrough cellular connectivity to a cloud server.The key issues addressed in this work include sensor and boardselection,Machine Learning(ML)model development for audio classification,TinyML implementation on amicrocontroller,choice of communication protocol,gateway selection,and power consumption optimization.Unlike the existing solutions,the developed node prototype uses an array of two microphone sensors forredundancy,and an ensemble network consisting of Long Short-Term Memory(LSTM)and ConvolutionalNeural Network(CNN)models for improved classification accuracy.The model outperforms LSTM and CNNmodels when used independently and also gave 88%accuracy after quantization.Notably,this solutiondemonstrates cost efficiency and high potential for scalability.展开更多
Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 diff...Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 differential expressed genes(DEGs)between the two treatments based on the RNA-seq sequencing of foxtail millet of water-logging stress.Furthermore,a total of 28 ERF family members were obtained,which have a complete open read-ing frame.We studied the evolution and function of SiERF family and how they affected the waterlogging tolerance.It was found that SiERF1A/B/C(GenBank ID:OR775217,OR775219,OR775218)and SiRAP2-12(GenBank ID:OR775216)have similar functions to the known waterlogging tolerance genes of other plants.Among them,the SiRAP2-12 expression was obviously significantly up-regulated in foxtail millet after 5d water-logging stress.After SiRAP2-12 was silenced,the activity of defense enzymes in millet decreased significantly.In details,superoxide dismutase(SOD),catalase(CAT)and peroxidase(POD),the osmotic regulator proline(Pro),and the activity of the anaerobic respiratory enzyme alcohol dehydrogenase(ADH)content were decreased by 78.61%,29.52%,79.95%,19.41%and 54.77%,respectively.In contrast,the relative electrical conductivity contents(REC),malondialdehyde(MDA),and hydrogen peroxide(H_(2)O_(2))of the foxtail millet subjected to virus-induced gene silencing clearly increased by 1.03-fold,36.09%,and 15.21%,respectively.The content of sodium(Na^(+))in the SiRAP2-12-silenced foxtail millet also increased,but that of potassium(K^(+))decreased.Interestingly,we found that ethylene content was significantly reduced.Further,the SiAOC1 expression,an essential gene for ethylene synthesis,was inhibited in SiRAP2-12-silenced foxtail millet after waterlogging stress.Taken together,we hypothesized that SiRAP2-12 might be a positive regulator of millet tolerance to waterlogging stress.展开更多
On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole sect...On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole section at a depth of 3925 metres and at a temperature of 148℃,the device collected high-quality permeability logging data.This marks a key technological breakthrough from 0 to 1 in permeability logging,and lays the foundation for the next step in developing a complete set of permeability logging equipment.展开更多
The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambr...The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambra Basin between latitudes 6˚43'N and 6˚47'N and longitudes 7˚28'E and 7˚32'E, it is stratigraphycally underlain by, from bottom to top, the Enugu/Nkporo, Mamu and Ajali Formation respectively, a complex geology that make citing of productive borehole in the area problematic leading to borehole failure and dry holes due to inadequate sampling. The study adopted a field and analytic sampling approach, integrating field geological, electrical resistivity and self-potential methods. The software, SedLog v3.1, InterpexIx1Dv.3, and Surfer v10 were employed for the data integration and interpretation. The result of the geological field and borehole data shows 11 sedimentary facies consisting of sandstone, shales and heterolith of sandstone/shale, with the aquifer zone mostly prevalent in the more porous sand-dominated horizons. Mostly the AK and HK were the dominant curve types. An average of 6 geo-electric layers were delineated across all transects with resistivity values ranging from 25.42 - 105.85 Ωm, 186.38 - 3383.3 Ωm, and 2992 - 6286.4 Ωm in the Enugu, Mamu and Ajali Formations respectively. The resistivity of the main aquifer layer ranges from 1 to 500 Ωm. The aquifer thickness within the study area varies between 95 and 140 m. The western and northwestern part of the study area which is underlain mainly by the Ajali Formation showed the highest groundwater potential in the area and suitable for citing productive boreholes.展开更多
The Gulong shale demonstrates high clay content and pronounced thin laminations,with limited vertical variability in log curves,complicating lithofacies classification.To comprehend the distribution and compositional ...The Gulong shale demonstrates high clay content and pronounced thin laminations,with limited vertical variability in log curves,complicating lithofacies classification.To comprehend the distribution and compositional features of lithofacies in the Gulong shale for optimal sweet spot selection and reservoir stimulation,this study introduced a lithofacies classification scheme and a log-based lithofacies evaluation method.Specifically,theΔlgR method was utilized for accurately determining the total organic carbon(TOC)content;a multi-mineral model based on element-to-mineral content conversion coefficients was developed to enhance mineral composition prediction accuracy,and the microresistivity curve variations derived from formation micro-image(FMI)log were used to compute lamination density,offering insights into sedimentary structures.Using this method,integrating TOC content,sedimentary structures,and mineral compositions,the Qingshankou Formation is classified into four lithofacies and 12 sublithofacies,displaying 90.6%accuracy compared to core description outcomes.The classification results reveal that the northern portion of the study area exhibits more prevalent fissile felsic shales,siltstone interlayers,shell limestones,and dolomites.Vertically,the upper section primarily exhibits organic-rich felsic shale and siltstone interlayers,the middle part is characterized by moderate organic quartz-feldspathic shale and siltstone/carbonate interlayers,and the lower section predominantly features organic-rich fissile felsic/clayey felsic shales.Analyzing various sublithofacies in relation to seven petrophysical parameters,oil test production,and fracturing operation conditions indicates that the organic-rich felsic shales in the upper section and the organic-rich/clayey felsic shales in the lower section possess superior physical properties and oil content,contributing to smoother fracturing operation and enhanced production,thus emerging as dominant sublithofacies.Conversely,thin interlayers such as siltstones and limestones,while producing oil,demonstrate higher brittleness and pose great fracturing operation challenges.The methodology and insights in this study will provide a valuable guide for sweet spot identification and horizontal well-based exploitation of the Gulong shale.展开更多
Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analy...Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analysis and empirical formula methods for identifying reservoir types using geophysical logging data have high uncertainty and low efficiency,which cannot accurately reflect the nonlinear relationship between reservoir types and logging data.Recently,the kernel Fisher discriminant analysis(KFD),a kernel-based machine learning technique,attracts attention in many fields because of its strong nonlinear processing ability.However,the overall performance of KFD model may be limited as a single kernel function cannot simultaneously extrapolate and interpolate well,especially for highly complex data cases.To address this issue,in this study,a mixed kernel Fisher discriminant analysis(MKFD)model was established and applied to identify reservoir types of the deep Sinian carbonates in central Sichuan Basin,China.The MKFD model was trained and tested with 453 datasets from 7 coring wells,utilizing GR,CAL,DEN,AC,CNL and RT logs as input variables.The particle swarm optimization(PSO)was adopted for hyper-parameter optimization of MKFD model.To evaluate the model performance,prediction results of MKFD were compared with those of basic-kernel based KFD,RF and SVM models.Subsequently,the built MKFD model was applied in a blind well test,and a variable importance analysis was conducted.The comparison and blind test results demonstrated that MKFD outperformed traditional KFD,RF and SVM in the identification of reservoir types,which provided higher accuracy and stronger generalization.The MKFD can therefore be a reliable method for identifying reservoir types of deep carbonates.展开更多
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ...In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.展开更多
Hydrate reservoirs are different from the host reservoirs of all other fossil energy sources because the characteristics of hydrate reservoirs are generally controlled by deep-sea fine-grained sedimentation. In such r...Hydrate reservoirs are different from the host reservoirs of all other fossil energy sources because the characteristics of hydrate reservoirs are generally controlled by deep-sea fine-grained sedimentation. In such reservoirs, the reliability of the classical logging evaluation models established for diagenetic reservoirs is questionable. This study used well W8 in the Qiongdongnan Basin to explore the clay content, porosity, saturation, and hydrate-enriched layer identification of a logging-based hydrate reservoir, and it was found that considering the effect of the clay content on the log response is necessary in the logging evaluation of hydrate reservoirs. In the evaluation of clay content, a method based on the optimization inversion method can obtain a more reliable clay content than other methods. Fine-grained sediment reservoirs have a high clay content, and the effect of clay on log responses must be considered when calculating porosity. In addition, combining density logging and neutron porosity logging data can obtain the best porosity calculation results, and the porosity calculation method based on sonic logging predicted that the porosity of the studied reservoir was low. It was very effective to identify hydrate layers based on resistivity, but the clay distribution and pore structure will also affect the relationship between resistivity, porosity and saturation, and it was suggested that the factors effecting the resistivity of different layers should be considered in the saturation evaluation and that a suitable model should be selected. This study also considered the lack of clarity of the relationships among the lithology, physical properties, hydrate-bearing occurrence properties, and log response properties of hydrate reservoirs and the lack of specialized petrophysical models. This research can directly help to improve hydrate logging evaluation.展开更多
Logging data and its interpretation results are one of the most important basic data for understanding reservoirs and oilfield development. Standardized and unified logging interpretation results play a decisive role ...Logging data and its interpretation results are one of the most important basic data for understanding reservoirs and oilfield development. Standardized and unified logging interpretation results play a decisive role in fine reservoir description and reservoir development. Aiming at the problem of the conflict between the development effect and the initial interpretation result of Yan 9 reservoir in Hujianshan area of Ordos Basin, by combining the current well production performance, logging, oil test, production test and other data, on the basis of making full use of core, coring, logging, thin section analysis and high pressure mercury injection data, the four characteristics of reservoir are analyzed, a more scientific and reasonable calculation model of reservoir logging parameters is established, and the reserves are recalculated after the second interpretation standard of logging is determined. The research improves the accuracy of logging interpretation and provides an effective basis for subsequent production development and potential horizons.展开更多
Based on five types of conventional logging curves including GR,RLLD,CNL,DEN and AC,and 39 core samples from 30 representative boreholes,the logging characteristics and lithofacies and sub-facies of the basaltic rocks...Based on five types of conventional logging curves including GR,RLLD,CNL,DEN and AC,and 39 core samples from 30 representative boreholes,the logging characteristics and lithofacies and sub-facies of the basaltic rocks were studied.Three basaltic facies and four sub-facies are recognized from the well logs,includ-ing volcanic conduit facies(post intrusive sub-facies),explosive facies,and effusive lava flow facies(tabular flow,compound flow and hyaloclastite sub-facies).The post intrusive,tabular flow and compound flow sub-facies logging curves are mainly controlled by the distribution of vesiculate zones and vesiculate content,which are characterized by four curves with good correlation.Post intrusive sub-facies are characterized by high RLLD,high DEN,with a micro-dentate logging curve pattern,abrupt contact relationships at the top and base.Tabular flow sub-facies are characterized by high RLLD,high DEN,with a bell-shaped log curve pattern,abrupt contact at the base and gradational contact at the top.Compound flow sub-facies are characterized by medium-low RLLD,with a micro-dentate or finger-like logging curve pattern,abrupt contact at the base and gradational contact at the top.Explosive facies and hyaloclastite sub-facies logging curves are mainly controlled by the distribution of the size and sorting of rock particles,which can be recognized by four kinds of logging curves with poor cor-relation.Explosive facies are characterized by low RLLD,medium-low CNL and low DEN,with a micro-dentate logging curve pattern.Hyaloclastite sub-facies are characterized by low RLLD,high CNL,low DEN and high AC,with a micro-dentate logging curve pattern.The present research is beneficial for the prediction of basaltic reser-voirs not only in the Liaohe depression but also in the other volcanic-sedimentary basins.展开更多
Objective: This study was to investigate the role of hsa-miR-155-3p and hsa-miR-155-5p as biomarkers and regulators of biological behavior in Systemic Sclerosis. Methods: A total of 10 SSc patients and 10 healthy cont...Objective: This study was to investigate the role of hsa-miR-155-3p and hsa-miR-155-5p as biomarkers and regulators of biological behavior in Systemic Sclerosis. Methods: A total of 10 SSc patients and 10 healthy controls were selected for the study. The expression levels of hsa-miR-155-3p and hsa-miR-155-5p in peripheral blood mononuclear cells of SSc patients and healthy controls were measured using RT-qPCR. The diagnostic value of these miRNAs was explored using Receiver Operating Characteristic curve analysis. Pearson or Spearman correlation analysis was performed to assess the correlation between miRNAs and clinical indicators in SSc patients. Potential target genes of hsa-miR-155-3p and hsa-miR-155-5p were predicted using miRDB, Targetscan, and miRDIP databases. GO functional annotation, KEGG pathway enrichment analysis, protein-protein interaction network construction, and selection of central genes were conducted. Results: The expression levels of hsa-miR-155-3p and hsa- miR-155-5p were significantly higher in PBMCs of SSc patients compared to healthy controls (P<0.001). The ROC curve analysis showed that hsa-miR-155-3p and hsa-miR-155-5p had a high diagnostic value for SSc (AUC=1, P<0.001). Correlation analysis revealed that hsa- miR-155-3p, hsa-miR-155-5p, and clinical indicators such as high-resolution CT, neutrophil percentage, lymphocyte percentage, and albumin to globulin ratio were correlated (P<0.05). The signaling pathways enriched with target genes of hsa-miR-155-3p and hsa-miR-155- 5p were closely associated with the occurrence and development of SSc fibrosis, immunity, and inflammation. Conclusions: hsa-miR-155-3p and hsa-miR-155-5p may be involved in regulating the occurrence and development of SSc fibrosis, immunity, and inflammation. They have the potential to serve as biomarkers for clinical diagnosis and treatment of SSc.展开更多
Downhole acoustic telemetry(DAT),using a long drill string with periodical structures as the channel,is a prospective technology for improving the transmission rate of logging while drilling(LWD)data.Previous studies ...Downhole acoustic telemetry(DAT),using a long drill string with periodical structures as the channel,is a prospective technology for improving the transmission rate of logging while drilling(LWD)data.Previous studies only focused on the acoustic property of a free drill string and neglected the coupling between pipes and fluid-filled boreholes.In addition to the drill-string waves,a series of fluid waves are recorded in the DAT channel,which has not been investigated yet.Unpredictable channel characteristics result in lower transmission rates and stability than expected.Therefore,a more realistic channel model is needed considering the fluid-filled borehole.In this paper,we propose a hybrid modeling method to investigate the response characteristics of the DAT channel.By combining the axial wavenumbers and excitation functions of mode waves in radially layered LWD structures,the channel model is approximated to the 1-D propagation,which considers transmission,reflection,and interconversion of the drillstring and fluid waves.The proposed 1-D approximation has been well validated by comparing the 2-D finite-difference modeling.It is revealed that the transmitted and converted fluid waves interfere with the drill-string wave,which characterizes the DAT channel as a particular coherent multi-path channel.When a fluid-filled borehole surrounds the drill string,the channel responses exhibit considerable delay as well as strong frequency selectivity in amplitude and phase.These new findings suggest that the complexity of the channel response has been underestimated in the past,and therefore channel measurements on the ground are unreliable.To address these channel characteristics,we apply a noncoherent demodulation strategy.The transmission rate for synthetic data reaches 15 bps in a 94.5 m long channel,indicating that the acoustic telemetry is promising to break the low-speed limitation of mud-pulse telemetry.展开更多
According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivale...According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivalent capillary pressure curve(pe)were established to reflect the reservoir heterogeneity.To promote the application of the theoretical models,the Archie's equation was introduced to establish a general model for quantitatively characterizing bi,K,and pei.Compared with the existing models,it is shown that:(1)the existing porosity spectrum model is the same as the general equation of gi;(2)the Ki model can display the permeability spectrum as compared with Purcell's permeability model;(3)the per model is constructed on a theoretical basis and avoids the limitations of existing models that are built only based on the component of porosity spectrum,as compared with the empirical model of capillary pressure curve.The application in the Permian Maokou Formation of Well TsX in the Central Sichuan paleo-uplift shows that the Ф_(i),K_(i),and p_(ci) models can be effectively applied to the identification of reservoir types,calculation of reservoir properties and pore structure parameters,and evaluation of reservoir heterogeneity.展开更多
BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patie...BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain.展开更多
基金Supported by projects of the National Natural Science Foundatio n of China(Nos.41972313,41790453).
文摘Volcanic oil and gas reservoirs are generally buried deep,which leads to a high whole-well coring cost,and the degree of development and size of reservoirs are controlled by volcanic facies.Therefore,accurately identifying volcanic facies by logging curves not only provides the basis of volcanic reservoir prediction but also saves costs during exploration.The Songliao Basin is a‘fault-depression superimposed’composite basin with a typical binary filling structure.Abundant types of volcanic lithologies and facies are present in the Lishu fault depression.Volcanic activity is frequent during the sedimentary period of the Huoshiling Formation.Through systematic petrographic identification of the key exploratory well(SN165C)of the Lishu fault-depression,which is a whole-well core,it is found that the Huoshiling Formation in SN165C contains four facies and six subfacies,including the volcanic conduit facies(crypto explosive breccia subfacies),explosive facies(pyroclastic flow and thermal wave base subfacies),effusive facies(upper and lower subfacies),and volcanogenic sedimentary facies(pyroclastic sedimentary subfacies).Combining core,thin section,and logging data,the authors established identification markers and petrographic chart logging phases,and also interpreted the longitudinal variation in volcanic petro-graphic response characteristics to make the charts more applicable to this area's volcanic petrographic interpretation of the Huoshiling Formation.These charts can provide a basis for the further exploration and development of volcanic oil and gas in this area.
基金funded by Climate Change AI(2023 innovation grant-https://www.climatechange.ai/innovation_grants).
文摘Forests promote the conservation of biodiversity and also play a crucial role in safeguarding theenvironment against erosion,landslides,and climate change.However,illegal logging remains a significant threatworldwide,necessitating the development of automatic logging detection systems in forests.This paper proposesthe use of long-range,low-powered,and smart Internet of Things(IoT)nodes to enhance forest monitoringcapabilities.The research framework involves developing IoT devices for forest sound classification andtransmitting each node’s status to a gateway at the forest base station,which further sends the obtained datathrough cellular connectivity to a cloud server.The key issues addressed in this work include sensor and boardselection,Machine Learning(ML)model development for audio classification,TinyML implementation on amicrocontroller,choice of communication protocol,gateway selection,and power consumption optimization.Unlike the existing solutions,the developed node prototype uses an array of two microphone sensors forredundancy,and an ensemble network consisting of Long Short-Term Memory(LSTM)and ConvolutionalNeural Network(CNN)models for improved classification accuracy.The model outperforms LSTM and CNNmodels when used independently and also gave 88%accuracy after quantization.Notably,this solutiondemonstrates cost efficiency and high potential for scalability.
基金This research was supported by the China Agricultural Research System(CARS-06-14.5-A23)HAAFS Basic Science and Technology Contract Project(Grant No.HBNKY-BGZ-02)Technical System of Foxtail Millet Industry in Hebei Province.
文摘Foxtail millet(Setaria italica)growth was inhibited because of waterlogging stress,which has caused yield reduc-tion.ERF family plays an important role to plant adversity tolerance.In our study,we obtained 19,819 differential expressed genes(DEGs)between the two treatments based on the RNA-seq sequencing of foxtail millet of water-logging stress.Furthermore,a total of 28 ERF family members were obtained,which have a complete open read-ing frame.We studied the evolution and function of SiERF family and how they affected the waterlogging tolerance.It was found that SiERF1A/B/C(GenBank ID:OR775217,OR775219,OR775218)and SiRAP2-12(GenBank ID:OR775216)have similar functions to the known waterlogging tolerance genes of other plants.Among them,the SiRAP2-12 expression was obviously significantly up-regulated in foxtail millet after 5d water-logging stress.After SiRAP2-12 was silenced,the activity of defense enzymes in millet decreased significantly.In details,superoxide dismutase(SOD),catalase(CAT)and peroxidase(POD),the osmotic regulator proline(Pro),and the activity of the anaerobic respiratory enzyme alcohol dehydrogenase(ADH)content were decreased by 78.61%,29.52%,79.95%,19.41%and 54.77%,respectively.In contrast,the relative electrical conductivity contents(REC),malondialdehyde(MDA),and hydrogen peroxide(H_(2)O_(2))of the foxtail millet subjected to virus-induced gene silencing clearly increased by 1.03-fold,36.09%,and 15.21%,respectively.The content of sodium(Na^(+))in the SiRAP2-12-silenced foxtail millet also increased,but that of potassium(K^(+))decreased.Interestingly,we found that ethylene content was significantly reduced.Further,the SiAOC1 expression,an essential gene for ethylene synthesis,was inhibited in SiRAP2-12-silenced foxtail millet after waterlogging stress.Taken together,we hypothesized that SiRAP2-12 might be a positive regulator of millet tolerance to waterlogging stress.
文摘On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole section at a depth of 3925 metres and at a temperature of 148℃,the device collected high-quality permeability logging data.This marks a key technological breakthrough from 0 to 1 in permeability logging,and lays the foundation for the next step in developing a complete set of permeability logging equipment.
文摘The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambra Basin between latitudes 6˚43'N and 6˚47'N and longitudes 7˚28'E and 7˚32'E, it is stratigraphycally underlain by, from bottom to top, the Enugu/Nkporo, Mamu and Ajali Formation respectively, a complex geology that make citing of productive borehole in the area problematic leading to borehole failure and dry holes due to inadequate sampling. The study adopted a field and analytic sampling approach, integrating field geological, electrical resistivity and self-potential methods. The software, SedLog v3.1, InterpexIx1Dv.3, and Surfer v10 were employed for the data integration and interpretation. The result of the geological field and borehole data shows 11 sedimentary facies consisting of sandstone, shales and heterolith of sandstone/shale, with the aquifer zone mostly prevalent in the more porous sand-dominated horizons. Mostly the AK and HK were the dominant curve types. An average of 6 geo-electric layers were delineated across all transects with resistivity values ranging from 25.42 - 105.85 Ωm, 186.38 - 3383.3 Ωm, and 2992 - 6286.4 Ωm in the Enugu, Mamu and Ajali Formations respectively. The resistivity of the main aquifer layer ranges from 1 to 500 Ωm. The aquifer thickness within the study area varies between 95 and 140 m. The western and northwestern part of the study area which is underlain mainly by the Ajali Formation showed the highest groundwater potential in the area and suitable for citing productive boreholes.
基金research is funded by China Petroleum Major Science and Tech-nology Project-Study on Reservoir Formation Theory and Key technology of Gulong Shale Oil(2021ZZ10-01)Petrochina Oil and Gas major project-Research on Production and exploration and development technology of large-scale Increase of Continental shale oil storage(2023ZZ15-02).
文摘The Gulong shale demonstrates high clay content and pronounced thin laminations,with limited vertical variability in log curves,complicating lithofacies classification.To comprehend the distribution and compositional features of lithofacies in the Gulong shale for optimal sweet spot selection and reservoir stimulation,this study introduced a lithofacies classification scheme and a log-based lithofacies evaluation method.Specifically,theΔlgR method was utilized for accurately determining the total organic carbon(TOC)content;a multi-mineral model based on element-to-mineral content conversion coefficients was developed to enhance mineral composition prediction accuracy,and the microresistivity curve variations derived from formation micro-image(FMI)log were used to compute lamination density,offering insights into sedimentary structures.Using this method,integrating TOC content,sedimentary structures,and mineral compositions,the Qingshankou Formation is classified into four lithofacies and 12 sublithofacies,displaying 90.6%accuracy compared to core description outcomes.The classification results reveal that the northern portion of the study area exhibits more prevalent fissile felsic shales,siltstone interlayers,shell limestones,and dolomites.Vertically,the upper section primarily exhibits organic-rich felsic shale and siltstone interlayers,the middle part is characterized by moderate organic quartz-feldspathic shale and siltstone/carbonate interlayers,and the lower section predominantly features organic-rich fissile felsic/clayey felsic shales.Analyzing various sublithofacies in relation to seven petrophysical parameters,oil test production,and fracturing operation conditions indicates that the organic-rich felsic shales in the upper section and the organic-rich/clayey felsic shales in the lower section possess superior physical properties and oil content,contributing to smoother fracturing operation and enhanced production,thus emerging as dominant sublithofacies.Conversely,thin interlayers such as siltstones and limestones,while producing oil,demonstrate higher brittleness and pose great fracturing operation challenges.The methodology and insights in this study will provide a valuable guide for sweet spot identification and horizontal well-based exploitation of the Gulong shale.
基金supported by the National Natural Science Foundation of China(No.U21B2062)the Natural Science Foundation of Hubei Province(No.2023AFB307)。
文摘Identification of reservoir types in deep carbonates has always been a great challenge due to complex logging responses caused by the heterogeneous scale and distribution of storage spaces.Traditional cross-plot analysis and empirical formula methods for identifying reservoir types using geophysical logging data have high uncertainty and low efficiency,which cannot accurately reflect the nonlinear relationship between reservoir types and logging data.Recently,the kernel Fisher discriminant analysis(KFD),a kernel-based machine learning technique,attracts attention in many fields because of its strong nonlinear processing ability.However,the overall performance of KFD model may be limited as a single kernel function cannot simultaneously extrapolate and interpolate well,especially for highly complex data cases.To address this issue,in this study,a mixed kernel Fisher discriminant analysis(MKFD)model was established and applied to identify reservoir types of the deep Sinian carbonates in central Sichuan Basin,China.The MKFD model was trained and tested with 453 datasets from 7 coring wells,utilizing GR,CAL,DEN,AC,CNL and RT logs as input variables.The particle swarm optimization(PSO)was adopted for hyper-parameter optimization of MKFD model.To evaluate the model performance,prediction results of MKFD were compared with those of basic-kernel based KFD,RF and SVM models.Subsequently,the built MKFD model was applied in a blind well test,and a variable importance analysis was conducted.The comparison and blind test results demonstrated that MKFD outperformed traditional KFD,RF and SVM in the identification of reservoir types,which provided higher accuracy and stronger generalization.The MKFD can therefore be a reliable method for identifying reservoir types of deep carbonates.
基金supported by CNPC-CZU Innovation Alliancesupported by the Program of Polar Drilling Environmental Protection and Waste Treatment Technology (2022YFC2806403)。
文摘In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.
基金funded by the Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology(No.MGQNLM-KF202004)Hainan Provincial Natural Science Foundation of China(Nos.422RC746 and 421QN281)+2 种基金the National Natural Science Foundation of China(No.42106213)the China Postdoctoral Science Foundation(Nos.2021M690161 and 2021T140691)the Postdoctorate Funded Project in Hainan Province.
文摘Hydrate reservoirs are different from the host reservoirs of all other fossil energy sources because the characteristics of hydrate reservoirs are generally controlled by deep-sea fine-grained sedimentation. In such reservoirs, the reliability of the classical logging evaluation models established for diagenetic reservoirs is questionable. This study used well W8 in the Qiongdongnan Basin to explore the clay content, porosity, saturation, and hydrate-enriched layer identification of a logging-based hydrate reservoir, and it was found that considering the effect of the clay content on the log response is necessary in the logging evaluation of hydrate reservoirs. In the evaluation of clay content, a method based on the optimization inversion method can obtain a more reliable clay content than other methods. Fine-grained sediment reservoirs have a high clay content, and the effect of clay on log responses must be considered when calculating porosity. In addition, combining density logging and neutron porosity logging data can obtain the best porosity calculation results, and the porosity calculation method based on sonic logging predicted that the porosity of the studied reservoir was low. It was very effective to identify hydrate layers based on resistivity, but the clay distribution and pore structure will also affect the relationship between resistivity, porosity and saturation, and it was suggested that the factors effecting the resistivity of different layers should be considered in the saturation evaluation and that a suitable model should be selected. This study also considered the lack of clarity of the relationships among the lithology, physical properties, hydrate-bearing occurrence properties, and log response properties of hydrate reservoirs and the lack of specialized petrophysical models. This research can directly help to improve hydrate logging evaluation.
文摘Logging data and its interpretation results are one of the most important basic data for understanding reservoirs and oilfield development. Standardized and unified logging interpretation results play a decisive role in fine reservoir description and reservoir development. Aiming at the problem of the conflict between the development effect and the initial interpretation result of Yan 9 reservoir in Hujianshan area of Ordos Basin, by combining the current well production performance, logging, oil test, production test and other data, on the basis of making full use of core, coring, logging, thin section analysis and high pressure mercury injection data, the four characteristics of reservoir are analyzed, a more scientific and reasonable calculation model of reservoir logging parameters is established, and the reserves are recalculated after the second interpretation standard of logging is determined. The research improves the accuracy of logging interpretation and provides an effective basis for subsequent production development and potential horizons.
文摘Based on five types of conventional logging curves including GR,RLLD,CNL,DEN and AC,and 39 core samples from 30 representative boreholes,the logging characteristics and lithofacies and sub-facies of the basaltic rocks were studied.Three basaltic facies and four sub-facies are recognized from the well logs,includ-ing volcanic conduit facies(post intrusive sub-facies),explosive facies,and effusive lava flow facies(tabular flow,compound flow and hyaloclastite sub-facies).The post intrusive,tabular flow and compound flow sub-facies logging curves are mainly controlled by the distribution of vesiculate zones and vesiculate content,which are characterized by four curves with good correlation.Post intrusive sub-facies are characterized by high RLLD,high DEN,with a micro-dentate logging curve pattern,abrupt contact relationships at the top and base.Tabular flow sub-facies are characterized by high RLLD,high DEN,with a bell-shaped log curve pattern,abrupt contact at the base and gradational contact at the top.Compound flow sub-facies are characterized by medium-low RLLD,with a micro-dentate or finger-like logging curve pattern,abrupt contact at the base and gradational contact at the top.Explosive facies and hyaloclastite sub-facies logging curves are mainly controlled by the distribution of the size and sorting of rock particles,which can be recognized by four kinds of logging curves with poor cor-relation.Explosive facies are characterized by low RLLD,medium-low CNL and low DEN,with a micro-dentate logging curve pattern.Hyaloclastite sub-facies are characterized by low RLLD,high CNL,low DEN and high AC,with a micro-dentate logging curve pattern.The present research is beneficial for the prediction of basaltic reser-voirs not only in the Liaohe depression but also in the other volcanic-sedimentary basins.
基金National Natural Science Foundation of China(No.8186029481860295)Natural Science Foundation of Inner Mongolia Autonomous Region(No.2019MS080552021MS08045)Science and Technology Plan Project of Inner Mongolia Autonomous Region(No.2018020892019GG052)。
文摘Objective: This study was to investigate the role of hsa-miR-155-3p and hsa-miR-155-5p as biomarkers and regulators of biological behavior in Systemic Sclerosis. Methods: A total of 10 SSc patients and 10 healthy controls were selected for the study. The expression levels of hsa-miR-155-3p and hsa-miR-155-5p in peripheral blood mononuclear cells of SSc patients and healthy controls were measured using RT-qPCR. The diagnostic value of these miRNAs was explored using Receiver Operating Characteristic curve analysis. Pearson or Spearman correlation analysis was performed to assess the correlation between miRNAs and clinical indicators in SSc patients. Potential target genes of hsa-miR-155-3p and hsa-miR-155-5p were predicted using miRDB, Targetscan, and miRDIP databases. GO functional annotation, KEGG pathway enrichment analysis, protein-protein interaction network construction, and selection of central genes were conducted. Results: The expression levels of hsa-miR-155-3p and hsa- miR-155-5p were significantly higher in PBMCs of SSc patients compared to healthy controls (P<0.001). The ROC curve analysis showed that hsa-miR-155-3p and hsa-miR-155-5p had a high diagnostic value for SSc (AUC=1, P<0.001). Correlation analysis revealed that hsa- miR-155-3p, hsa-miR-155-5p, and clinical indicators such as high-resolution CT, neutrophil percentage, lymphocyte percentage, and albumin to globulin ratio were correlated (P<0.05). The signaling pathways enriched with target genes of hsa-miR-155-3p and hsa-miR-155- 5p were closely associated with the occurrence and development of SSc fibrosis, immunity, and inflammation. Conclusions: hsa-miR-155-3p and hsa-miR-155-5p may be involved in regulating the occurrence and development of SSc fibrosis, immunity, and inflammation. They have the potential to serve as biomarkers for clinical diagnosis and treatment of SSc.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174421 and 11734017)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,China(Grant Nos.YJKYYQ20200072 and GJJSTD20210008).
文摘Downhole acoustic telemetry(DAT),using a long drill string with periodical structures as the channel,is a prospective technology for improving the transmission rate of logging while drilling(LWD)data.Previous studies only focused on the acoustic property of a free drill string and neglected the coupling between pipes and fluid-filled boreholes.In addition to the drill-string waves,a series of fluid waves are recorded in the DAT channel,which has not been investigated yet.Unpredictable channel characteristics result in lower transmission rates and stability than expected.Therefore,a more realistic channel model is needed considering the fluid-filled borehole.In this paper,we propose a hybrid modeling method to investigate the response characteristics of the DAT channel.By combining the axial wavenumbers and excitation functions of mode waves in radially layered LWD structures,the channel model is approximated to the 1-D propagation,which considers transmission,reflection,and interconversion of the drillstring and fluid waves.The proposed 1-D approximation has been well validated by comparing the 2-D finite-difference modeling.It is revealed that the transmitted and converted fluid waves interfere with the drill-string wave,which characterizes the DAT channel as a particular coherent multi-path channel.When a fluid-filled borehole surrounds the drill string,the channel responses exhibit considerable delay as well as strong frequency selectivity in amplitude and phase.These new findings suggest that the complexity of the channel response has been underestimated in the past,and therefore channel measurements on the ground are unreliable.To address these channel characteristics,we apply a noncoherent demodulation strategy.The transmission rate for synthetic data reaches 15 bps in a 94.5 m long channel,indicating that the acoustic telemetry is promising to break the low-speed limitation of mud-pulse telemetry.
基金Supported by the National Natural Science Foundation of China(U2003102,41974117)China National Science and Technology Major Project(2016ZX05052001).
文摘According to the capillary theory,an equivalent capillary model of micro-resistivity imaging logging was built.On this basis,the theoretical models of porosity spectrum(Ф_(i)),permeability spectrum(K_(i))and equivalent capillary pressure curve(pe)were established to reflect the reservoir heterogeneity.To promote the application of the theoretical models,the Archie's equation was introduced to establish a general model for quantitatively characterizing bi,K,and pei.Compared with the existing models,it is shown that:(1)the existing porosity spectrum model is the same as the general equation of gi;(2)the Ki model can display the permeability spectrum as compared with Purcell's permeability model;(3)the per model is constructed on a theoretical basis and avoids the limitations of existing models that are built only based on the component of porosity spectrum,as compared with the empirical model of capillary pressure curve.The application in the Permian Maokou Formation of Well TsX in the Central Sichuan paleo-uplift shows that the Ф_(i),K_(i),and p_(ci) models can be effectively applied to the identification of reservoir types,calculation of reservoir properties and pore structure parameters,and evaluation of reservoir heterogeneity.
基金Supported by the National Natural Science Foundation of China,No.81900743Heilongjiang Province Outstanding Young Medical Talents Training Grant Project,China,No.HYD2020YQ0007.
文摘BACKGROUND Diabetic intracerebral hemorrhage(ICH)is a serious complication of diabetes.The role and mechanism of bone marrow mesenchymal stem cell(BMSC)-derived exosomes(BMSC-exo)in neuroinflammation post-ICH in patients with diabetes are unknown.In this study,we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.METHODS BMSC-exo were isolated from mouse BMSC media.This was followed by transfection with microRNA-129-5p(miR-129-5p).BMSC-exo or miR-129-5poverexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucoseaffected BV2 cells for in vitro analyses.The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1(HMGB1).Quantitative polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors,such as HMGB1,interleukin 6,interleukin 1β,toll-like receptor 4,and tumor necrosis factorα.Brain water content,neural function deficit score,and Evans blue were used to measure the neural function of mice.RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery.MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation.Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases.Furthermore,we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes,thereby improving the neurological function of the brain.