Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobu...Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobutyric acid(GABA)was found with anti-inflammatory effect.Therefore,this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models.In vitro study showed GABA could effectively regulate the level of inflammatory cytokines(interleukin(IL)-1β,IL-6,IL-10,and prostaglandin E2)and Ca2+in cells,and inhibit the phosphorylation of p65,IκB,p38,c-Jun N-terminal kinase(JNK)and extracellular signal-regulated kinase(ERK).These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathway signaling pathways.In vivo experiment was performed to verify the anti-inflammatory effect of GABA,and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice,as it down-regulated the pro-inflammatory cytokines,malondialdehyde,aspartate transferase,and alanine transaminase.The relative expression of phosphorylated p38,JNK and ERK in mice liver with GABA treatment were reduced to 65%,39%and 80%of the control group,respectively.Furthermore,GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut,which reveals GABA could effectively reduce the translocation of gut microbiota.展开更多
BACKGROUND Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system,causing encephalitis.Few cases of anti-N-methyl-Daspartate receptor autoimmune encephalitis(AE)secon...BACKGROUND Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system,causing encephalitis.Few cases of anti-N-methyl-Daspartate receptor autoimmune encephalitis(AE)secondary to neurosyphilis have been reported.We report a neurosyphilis patient with anti-γ-aminobutyric acid-B receptor(GABABR)AE.CASE SUMMARY A young man in his 30s who presented with acute epileptic status was admitted to a local hospital.He was diagnosed with neurosyphilis,according to serum and cerebrospinal fluid(CSF)tests for syphilis.After 14 d of antiepileptic treatment and anti-Treponema pallidum therapy with penicillin,epilepsy was controlled but serious cognitive impairment,behavioral,and serious psychiatric symptoms were observed.He was then transferred to our hospital.The Mini-Mental State Examination(MMSE)crude test results showed only 2 points.Cranial magnetic resonance imaging revealed significant cerebral atrophy and multiple fluidattenuated inversion recovery high signals in the white matter surrounding both lateral ventricles,left amygdala and bilateral thalami.Anti-GABABR antibodies were discovered in CSF(1:3.2)and serum(1:100).The patient was diagnosed with neurosyphilis complicated by anti-GABABR AE,and received methylprednisolone and penicillin.Following treatment,his mental symptoms were alleviated.Cognitive impairment was significantly improved,with a MMSE of 8 points.Serum anti-GABABR antibody titer decreased to 1:32.The patient received methylprednisolone and penicillin after discharge.Three months later,the patient’s condition was stable,but the serum anti-GABABR antibody titer was 1:100.CONCLUSION This patient with neurosyphilis combined with anti-GABABR encephalitis benefited from immunotherapy.展开更多
Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity....Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity.This report investigated the effects of cold stress and supplementalγ-aminobutyric acid(GABA)under cold stress on nitrogen metabolism in rice seedlings.Cold stress resulted in a greater increase in the transformation to NH_(4)^(+)by nitrate reductase(NR)in roots,it further resulted in lower levels of NO_(3)^(-)content in roots,weakened glutamine glutamate(GOGAT/GS)pathway and elevated glutamate dehydrogenase(GDH)pathway of rice seedlings.Whereas,compared with cold stress,supplementation of GABA(2.5 mmol·L^(-1))could increase relative water content(79.43%)and biomass(34.15%)of rice seedlings.GABA could act as an amplifier of stress signal conduction/transduction to increase NR activity and promote NO_(3)^(-)assimilation in leaves.In addition,GABA elicited the Ca^(2+)signaling pathway which could promote the GDH pathway and GABA shunt,increase the activities of GS and GDH,and the expression of OsGAD2 and OsGDH family.The GABA might increase the ratio of the Glu family and avoid NH4+toxicity in order to raise the concentration of organic compounds and alleviate the harmful consequences of cold stress.Based on these observations,this study proposed that GABA mediated cold tolerance in rice seedlings by activating Ca^(2+)burst and subsequent crosstalk among Ca^(2+)signaling,GDH pathway and GABA shunt.展开更多
Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral sub...Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral subiculum, which play a critical role in the reinstatement of drug-seeking behavior induced by environmental cues. Methods Conditioning place preference (CPP) and conditioning place aversion (CPA) models were used to establish environment associated with rewarding and aversive properties of morphine respectively. Microdialysis and high performance liquid chromatography were used to measure the extracelluar level of glutamate and GABA in the ventral subiculum under these environmental cues. Results Exposure to the environmental cues associated with rewarding properties of morphine resulted in a decrease (approximately 11%) of extracellular level of GABA in ventral subiculum, and exposure to the environmental cues associated with aversive properties of morphine resulted in an increase (approximately 230%) of extracellular level of glutamate in ventral subiculum. Conclusion Environmental cues associated with different properties of morphine modulate the release of distinct neurotransmitters in the hippocampal ventral subiculum possibly through different neural circuit.展开更多
Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Me...Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Methods After GABA or the GABAA-receptor antagonist, bicuculline (Bic), was injected into cerebral ventricles or NAc, right sciatic nerve was stimulated by electrical pulses, which was considered as traumatic pain stimulation. Extracellular recordings methods were used to record the electric activities of PEN in NAc. Results When GABA was injected into intracerebroventricle (ICV) as well as NAc, it could decrease the pain-evoked discharge frequency and prolong the latency of PEN. Bic could interdict the above effects of GABA on the electric activities of PEN. Conclusion Exogenous GABA might have an inhibitory effect on the central pain adjustment. Furthermore, GABA and GABAA receptor participate and mediate the traumatic information transmission process in CNS.展开更多
γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously...γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1), the present study explored the pathophysiological role of GAT1 in epileptogenesis. Though displaying no spontaneous seizure activity, these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid. In addition, the GABAA receptor and glutamate transporters are up-regulated in transgenic mice, which perhaps reflects a compensatory or corrective change to the elevated level of GAT1. These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission, and seizure susceptibility can be altered by neurotransmitter transporters.展开更多
γ-Aminobutyric acid and GABAergic receptors were previously reported to be distributed in reproductive systems besides CNS and predicted to participate in the modulation of testicular function. γ-Aminobutyric acid t...γ-Aminobutyric acid and GABAergic receptors were previously reported to be distributed in reproductive systems besides CNS and predicted to participate in the modulation of testicular function. γ-Aminobutyric acid transporter was implicated to be involved in this process. However, the potential role of γ-aminobutyric transporter in testis has not been explored. In this study, we investigated the existence of mouse γ-aminobutyric acid transporter subtype I (mGAT1) in testis. Wild-type and transgenic mice, which overexpressing mGAT1 in a variety of tissues, especially in testis, were primarily studied to approach the profile of mGAT1 in testis. Mice with overexpressed mGAT1 develop normally but with reduced mass and size of testis as compared with wild-type. Testicular morphology of transgenic mice exhibited overt abnormalities including focal damage of the spermatogenic epithelium accompanied by capillaries proliferation and increased diameter of seminiferous tubules lumen. Reduced number of spermatids was also found in some seminiferous tubules. Our results clearly demonstrate the presence of GAT1 in mouse testis and imply that GAT1 is possibly involved in testicular function.展开更多
Objective:The present study aimed to investigate the effect of seasonal variation on neurotransmitter release in the hippocampus of normal rats and rats with pineal excision.Methods:Two time points,the summer and wint...Objective:The present study aimed to investigate the effect of seasonal variation on neurotransmitter release in the hippocampus of normal rats and rats with pineal excision.Methods:Two time points,the summer and winter solstice,which are the longest and shortest days of the year,respectively,were selected.Male Spraguee Dawley rats that underwent a sham operation without pineal excision were included as a control group.The concentrations of 5-hydroxytryptamine(5-HT)andγ-aminobutyric acid(GABA)were determined by radioimmunoassays and enzyme-linked immunosorbent assays,respectively.Results:In the winter,the 5-HT and GABA levels in normal rats exhibited a significant difference compared with those in the operation group(P<.01).A difference was also noted in GABA levels between the normal group and the sham operation group(P<.05).The concentrations of 5-HT and GABA in the hippocampal tissues of the normal group exhibited a seasonal rhythm consisting of elevation during the summer and reduction during the winter(P<.01),while the GABA levels in the sham operation group exhibited a significant difference,with elevation during the summer and reduction during the winter(P<.01).In the operation group,GABA showed the same trend(P<.01).Conclusion:The seasonal rhythm of neurotransmitter secretion by the hippocampus(5-HT and GABA)consisted of elevation during the summer and reduction during the winter.During the winter,the pineal gland exhibited a reverse regulatory effect on the secretion of 5-HT and GABA in the hippocampus,and it exhibited seasonal selectivity with regard to the regulation of 5-HT.展开更多
Near-infrared spectroscopy (NIRS) with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS) r...Near-infrared spectroscopy (NIRS) with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS) regression can be used as a rapid analytical method to simultaneously quantify L-glutamic acid (L- GIu) and γ-aminobutyric acid (GABA) in a biotransformation process and to guide the optimization of production conditions when the merits of NIRS are combined with response surface methodology. The high performance liquid chromatography (HPLC) reference analysis was performed by the o-phthaldialdehyde pre-column derivatization. NIRS measurements of two batches of 141 samples were firstly analyzed by PLS with several spectral pre-processing methods. Compared with those of the HPLC reference analysis, the resulting determination coefficients (R2), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) of the external validation for the L-GIu concentration were 99.5%, 1.62 g/L, and 11.3, respectively. For the GABA concentration, R2, RMSEP, and RPD were 99.8%, 4.00 g/L, and 16.4, respectively. This NIRS model was then used to optimize the biotransformation process through a Box- Behnken experimental design. Under the optimal conditions without pH adjustment, 200 gjL L-GIu could be catalyzed by 7148 U/L glutamate decarboxylase (GAD) to GABA, reaching 99% conversion at the fifth hour. NIRS analysis provided timely information on the conversion from L-GIu to GABA. The results suggest that the NIRS model can not only be used for the routine profiling of enzymatic conversion, providing a simple and effective method of monitoring the biotransformation process of GABA, but also be considered to be an optimal tool to guide the optimization of production conditions.展开更多
To investigate the effect of propofol on the release of glutamate and γ-aminobutyric acid (GABA) from rat hippocampal synatosomes, synaptosomes was made from hippocampus and incubated with artificial cerebrospinal ...To investigate the effect of propofol on the release of glutamate and γ-aminobutyric acid (GABA) from rat hippocampal synatosomes, synaptosomes was made from hippocampus and incubated with artificial cerebrospinal fluid (aCSF). With the experiment of Ca^2+-dependent release of glutamate and GABA, dihydrokainic acid (DHK) and nipectic acid were added into aCSF. For the observation of Ca^2+-independent release of glutamate and GABA, no DHK, nipectic acid and Ca^2+ were added from aCSF. The release of glutamate and GABA were evoked by 20 μmol/L veratridine or 30 mmol/L KCh The concentration of glutamate and GABA in aCSF was measured by using high-performance liquid chromatography (HPLC). 30, 100 arid 300 μmol/L propofol significantly inhibited veratridine-evoked Ca^2+-dependent release of glutamate and GABA (P〈0. 01 or P〈0. 05), However, propofol showed no effect on elevated KCl-evoked Ca^2+-dependent release of glutamate and GABA (P〉0, 05), Veratridine or elevated KCI evoked Ca^2+-independent release of glutamate and GABA was not affected significantly by propofol (P〉0.05). Propofol could inhibit Ca^2+- dependent release of glutamate and GABA, However, it has no effect on the Ca^2+-independent release of glutamate and GABA,展开更多
The stability issue has become one of the main challenges for the commercialization of perovskite solar cells(PSCs).Formamidinium(FA)-based perovskites have shown great promise owing to their improved thermal and mois...The stability issue has become one of the main challenges for the commercialization of perovskite solar cells(PSCs).Formamidinium(FA)-based perovskites have shown great promise owing to their improved thermal and moisture stability.However,these perovskites are suffering from phase transition and separation.Here,a method of incorporating of γ-aminobutyric acid(GABA) and cesium cations into FAPbl_(3) is developed to improve the phase stability.It is demonstrated that the crystallinity of α-FAPbl_(3) phase is greatly improved and the phase transition temperature is significantly dropped.The resultant solar cell therefore obtains a champion power conversion efficiency(PCE) of 23.71%,which is one of the highest efficiencies for methylammonium-free PSCs.Furthermore,it shows an impressively enhanced stability under illumination,exhibiting the great potential of FA-based perovskites for efficient and stable solar cells.展开更多
Transgenic mice ubiquitously overexpressing murine γ aminobutyric acid transporter subtype Ⅰ were created. Unexpectedly, these mice markedly exhibited heritable obesity, which features significantly increased body w...Transgenic mice ubiquitously overexpressing murine γ aminobutyric acid transporter subtype Ⅰ were created. Unexpectedly, these mice markedly exhibited heritable obesity, which features significantly increased body weight and fat deposition. Behavioral examination revealed that transgeinc mice have slightly reduced spontaneous locomotive capacity and altered feeding pattern. Tills preliminary finding indicates that the inappropriate level of γ-aminobutyric acid transporters may be directly or indirectly involved in the pathogenic mechanism underlying certain types of obesity.展开更多
Nonalcoholic steatohepatitis(NASH) is one of the most common liver diseases and a major cause of liver fibrosis worldwide.r-Aminobutyric acid(GABA) is one of the most abundant inhibitory neurotransmitters in the c...Nonalcoholic steatohepatitis(NASH) is one of the most common liver diseases and a major cause of liver fibrosis worldwide.r-Aminobutyric acid(GABA) is one of the most abundant inhibitory neurotransmitters in the central nervous system.Recently,it has been reported that GABAergic signaling pathways are found in various non-neuronal tissues including the immune system and play a functional role.In the present study,we investigated whether administration of GABA has effects on NASH through its immunomodulatory effects.To test this hypothesis,C57BL/6 mice were fed a methionine-choline-deficient(MCD) diet for 8 weeks.After four weeks into MCD feeding,mice were provided with plain water(control) or water containing 2 mg/mL of GABA for the subsequent 4 weeks.Using this MCD diet-induced NASH model,we found that mice receiving GABA showed more severe steatohepatitis and liver fibrosis than control mice.This increased liver damage was confirmed by higher levels of serum alanine transaminase(ALT) and aspartate aminotransferase(AST) compared to the control group.In accordance with increased liver steatohepatitis,NASH-related and inflammatory gene expression(collagen al,tissue inhibitor of metalloproteinase-1,TNF-α) in the liver was markedly increased in GABA-treated mice.Furthermore,GABA directly enhanced production of inflammatory cytokines including IL-6 and TNF-α in LPS activated RAW macrophage cells and increased TIB-73 hepatocyte death.Such effects were abolished when GABA was treated with bicuculline,a competitive antagonist of GABA receptors.These results suggest that oral administration of GABA may be involved in changes of the liver immune milieu and conferred detrimental effects on NASH progression.展开更多
Under physiological conditions, γ-aminobutyric acid poorly crosses the blood-brain barrier. It is likely that a non-toxic derivative of γ-aminobutyric acid which enters the brain easily will have useful anticonvulsa...Under physiological conditions, γ-aminobutyric acid poorly crosses the blood-brain barrier. It is likely that a non-toxic derivative of γ-aminobutyric acid which enters the brain easily will have useful anticonvulsant activity. 16 derivatives of γ-aminobutyric acid with an imine link to a lipophilic carrier were prepared and tested for anticonvulsant activity; six compounds show anticonvulsant activity.展开更多
Biosynthesis of the functional factor𝛾γ-aminobutyric acid(GABA)in bacteria involves two key proteins an intra-cellular glutamate decarboxylase(GadB)and a membrane-bound antiporter(GadC).Efficient co-expressio...Biosynthesis of the functional factor𝛾γ-aminobutyric acid(GABA)in bacteria involves two key proteins an intra-cellular glutamate decarboxylase(GadB)and a membrane-bound antiporter(GadC).Efficient co-expression of suitable GadB and GadC candidates is crucial for improving GABA productivity.In this study,gadBΔC11 of Lacti-plantibacillus plantarum and gadCΔC41 of Escherichia coli were inserted into the designed double promoter(P T7lac and P BAD)expression system.Then,E.coli Lemo21(DE3)was chosen as the host to minimize the toxic effects of GadCΔC41 overexpression.Furthermore,a green and high-efficiency GABA synthesis system using dormant engineered Lemo21(DE3)cells as biocatalysts was developed.The total GABA yield reached 829.08 g/L with a 98.7%conversion ratio within 13 h,when engineered E.coli Lemo21(DE3)cells were concentrated to an OD 600 of 20 and reused for three cycles in a 3 M L-glutamate solution at 37℃,which represented the highest GABA productivity ever reported.Overall,expanding the active pH ranges of GadB and GadC toward physiological pH and employing a tunable expression host for membrane-bound GadC production is a promising strategy for high-level GABA biosynthesis in E.coli.展开更多
The γ-aminobutyric acid neurotransmitter in the spinal cord dorsal horn plays an important role in pain modulation through primary afferent-mediated presynaptic inhibition. The weakening of γ-aminobutyric acid-media...The γ-aminobutyric acid neurotransmitter in the spinal cord dorsal horn plays an important role in pain modulation through primary afferent-mediated presynaptic inhibition. The weakening of γ-aminobutyric acid-mediated presynaptic inhibition may be an important cause of neuropathic pain. γ-aminobutyric acid-mediated presynaptic inhibition is related to the current strength of γ-aminobutyric acid A receptor activation. In view of this, the whole-cell patch-clamp technique was used here to record the change in muscimol activated current of dorsal root ganglion neurons in a chronic constriction injury model. Results found that damage in rat dorsal root ganglion neurons following application of muscimol caused concentration-dependent activation of current, and compared with the sham group, its current strength and γ-aminobutyric acid A receptor protein expression decreased. Immunofluorescence revealed that γ-aminobutyric acid type A receptor α2 subunit protein expression decreased and was most obvious at 12 and 15 days after modeling. Our experimental findings confirmed that the y-aminobutyric acid type A receptor α2 subunit in the chronic constriction injury model rat dorsal root ganglion was downregulated, which may be one of the reasons for the reduction of injury in dorsal root ganglion neurons following muscimol-activated currents.展开更多
Muscarinic receptors and nicotine receptors can increase free calcium ion levels in the facial nucleus via different channels following facial nerve injury. In addition, γ-aminobutyric acid A (GABAA) receptors have...Muscarinic receptors and nicotine receptors can increase free calcium ion levels in the facial nucleus via different channels following facial nerve injury. In addition, γ-aminobutyric acid A (GABAA) receptors have been shown to negatively regulate free calcium ion levels in the facial nucleus by inhibiting nicotine receptors. The present study investigated the influence of GABAA, γ-aminobutyric acid B (GABAB) and C (GABAc) receptors on muscarinic receptors in rats with facial nerve injury by confocal laser microscopy. GABAA and GABAB receptors exhibited significant dose-dependent inhibitory effects on increased muscarinic receptor-mediated free calcium ion levels following facial nerve injury. Results showed that GABAA and GABAB receptors negatively regulate muscarinic receptor effects and interplay with cholinergic receptors to regulate free calcium ion levels for facial neural regeneration.展开更多
Melatonin and gamma-aminobutyric acid(GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective si...Melatonin and gamma-aminobutyric acid(GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective single-center non-randomized controlled clinical trial performed in the China Rehabilitation Research Center, we analyzed the relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke. Patients during rehabilitation of stroke were recruited and assigned to the insomnia group or non-insomnia group. Simultaneously, persons without stroke or insomnia served as normal controls. Each group contained 25 cases. The primary outcome was nocturnal concentrations of melatonin, GABA and total antioxidants in peripheral blood. The secondary outcomes were Pittsburgh Sleep Quality Index, Insomnia Severity Index, Epworth Sleepiness Scale, Fatigue Severity Scale, Morningness-Eveningness Questionnaire(Chinese version), and National Institute of Health Stroke Scale. The relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke was analyzed and showed that they were lower in the insomnia group than in the non-insomnia group. The severity of stroke was higher in the insomnia group than in the non-insomnia group. Correlation analysis demonstrated that the nocturnal concentrations of melatonin and GABA were associated with insomnia after stroke. This trial was registered at Clinical Trials.gov, identifier: NCT03202121.展开更多
Background: Our previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage, excessive apoptosis, and dysfunction, its initial reason is intracellular calcium overload in hi...Background: Our previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage, excessive apoptosis, and dysfunction, its initial reason is intracellular calcium overload in hippocampus triggered by N-methyl-D-aspartic acid receptor (NMDAR) over-activation. NMDAR activation can be suppressed by y-aminobutyric acid (A) receptor (GABAAR). Whether GABAAR can prevent intense exercise-induced hippocampus apoptosis, damage, or dysfunction will be studied in this study. Methods: According to dose test, rats were randomly divided into control (Con), Ex, muscimol (MUS, 0.1 mg/kg) and bicuculline (BIC, 0.5 mg/kg) groups, then all rats underwent once swimming Ex except ones in Con group only underwent training, lntracellular free calcium concentration ([Ca2+]i) was measured by Fura-2-acetoxymethyl ester; glial fibrillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were also performed; apoptosis were displayed by dUTP nick end labeling (TUNEL) stain; endoplasmic reticulum stress-induced apoptosis pathway was detected by Western blotting analysis; Morris water maze was used to detect learning ability and spatial memory. Results: The appropriate dose was 0.1 mg/kg for MUS and 0.5 mg/kg for BIC. Ex group showed significantly increased [Ca^2+]i and astrogliosis; TUNEL positive cells and levels of GFAP, B cell lymphoma-2 (Bcl-2) associated X protein (Bax), caspase-3, caspase-12 cleavage, CCAAT/enhancer binding protein homologous protein (CHOP), and p-Jun amino-terminal kinase (p-JNK) in Ex group also raised significantly compared to Con group, while SYP, synapse plasticity, and Bcl-2 levels in Ex group were significantly lower than those in Con group. These indexes were back to normal in MUS group. BIC group had the highest levels of [Ca^2+]i, astrogliosis, TUNEL positive cell, GFAP, Bax, caspase-3, caspase-12 cleavage, CHOP, and p-JNK, it also gained the lowest SYP, synapse plasticity, and Bcl-2 levels among all groups. Water maze test showed that Ex group had longer escape latency (EL) and less quadrant dwell time than Con group; all indexes between MUS and Con groups had no significant differences; BIC had the longest EL and least quadrant dwell time among all groups. Conclusions: Activation of GABAAR could prevent intense exercise-induced synapses damage, excessive apoptosis, and dysfunction of hippocampus.展开更多
基金supported by China Agriculture Research System of MOF and MARA(CARS-32)the Guangzhou Wanglaoji Lychee Industry Research Project(5100-H220577)+2 种基金the Science and Technology Planning Project of Guangzhou City of China(202103000054)the National Natural Science Foundation of China(32202022)the Dongguan Key R&D Programme(2022120030008).
文摘Previous research reported litchi thaumatin-like protein(LcTLP)could lead to inflammation,which is a factor causing the adverse reactions after excessive intake of litchi.As a main amino acid in litchi pulp,γ-aminobutyric acid(GABA)was found with anti-inflammatory effect.Therefore,this study aimed to investigate the effects of GABA on LcTLP-induced inflammation through RAW264.7 macrophages and C57BL mice models.In vitro study showed GABA could effectively regulate the level of inflammatory cytokines(interleukin(IL)-1β,IL-6,IL-10,and prostaglandin E2)and Ca2+in cells,and inhibit the phosphorylation of p65,IκB,p38,c-Jun N-terminal kinase(JNK)and extracellular signal-regulated kinase(ERK).These results indicate GABA alleviated inflammation through nuclear factor-κB and mitogen-activated protein kinase pathway signaling pathways.In vivo experiment was performed to verify the anti-inflammatory effect of GABA,and the results demonstrated that GABA reduced the inflammation and oxidative stress in the liver of LcTLP-treated mice,as it down-regulated the pro-inflammatory cytokines,malondialdehyde,aspartate transferase,and alanine transaminase.The relative expression of phosphorylated p38,JNK and ERK in mice liver with GABA treatment were reduced to 65%,39%and 80%of the control group,respectively.Furthermore,GABA treatment enriched probiotic bacteria and decreased pathogenic bacteria in mice gut,which reveals GABA could effectively reduce the translocation of gut microbiota.
文摘BACKGROUND Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system,causing encephalitis.Few cases of anti-N-methyl-Daspartate receptor autoimmune encephalitis(AE)secondary to neurosyphilis have been reported.We report a neurosyphilis patient with anti-γ-aminobutyric acid-B receptor(GABABR)AE.CASE SUMMARY A young man in his 30s who presented with acute epileptic status was admitted to a local hospital.He was diagnosed with neurosyphilis,according to serum and cerebrospinal fluid(CSF)tests for syphilis.After 14 d of antiepileptic treatment and anti-Treponema pallidum therapy with penicillin,epilepsy was controlled but serious cognitive impairment,behavioral,and serious psychiatric symptoms were observed.He was then transferred to our hospital.The Mini-Mental State Examination(MMSE)crude test results showed only 2 points.Cranial magnetic resonance imaging revealed significant cerebral atrophy and multiple fluidattenuated inversion recovery high signals in the white matter surrounding both lateral ventricles,left amygdala and bilateral thalami.Anti-GABABR antibodies were discovered in CSF(1:3.2)and serum(1:100).The patient was diagnosed with neurosyphilis complicated by anti-GABABR AE,and received methylprednisolone and penicillin.Following treatment,his mental symptoms were alleviated.Cognitive impairment was significantly improved,with a MMSE of 8 points.Serum anti-GABABR antibody titer decreased to 1:32.The patient received methylprednisolone and penicillin after discharge.Three months later,the patient’s condition was stable,but the serum anti-GABABR antibody titer was 1:100.CONCLUSION This patient with neurosyphilis combined with anti-GABABR encephalitis benefited from immunotherapy.
基金Supported by the National Natural Science Foundation of China(32301935)the Heilongjiang Province Natural Science Foundation Project(LH2020C005)+1 种基金the Postdoctoral Fund to Research Start-up of Heilongjiang Province(LBH-Q21077)Heilongjiang Province Applied Technology Research and Development Plan Project(GA20B101)。
文摘Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity.This report investigated the effects of cold stress and supplementalγ-aminobutyric acid(GABA)under cold stress on nitrogen metabolism in rice seedlings.Cold stress resulted in a greater increase in the transformation to NH_(4)^(+)by nitrate reductase(NR)in roots,it further resulted in lower levels of NO_(3)^(-)content in roots,weakened glutamine glutamate(GOGAT/GS)pathway and elevated glutamate dehydrogenase(GDH)pathway of rice seedlings.Whereas,compared with cold stress,supplementation of GABA(2.5 mmol·L^(-1))could increase relative water content(79.43%)and biomass(34.15%)of rice seedlings.GABA could act as an amplifier of stress signal conduction/transduction to increase NR activity and promote NO_(3)^(-)assimilation in leaves.In addition,GABA elicited the Ca^(2+)signaling pathway which could promote the GDH pathway and GABA shunt,increase the activities of GS and GDH,and the expression of OsGAD2 and OsGDH family.The GABA might increase the ratio of the Glu family and avoid NH4+toxicity in order to raise the concentration of organic compounds and alleviate the harmful consequences of cold stress.Based on these observations,this study proposed that GABA mediated cold tolerance in rice seedlings by activating Ca^(2+)burst and subsequent crosstalk among Ca^(2+)signaling,GDH pathway and GABA shunt.
基金supported by the National Natural Science Foundation of China(No.30230130 and No.30400129)the Ministry of Science and Technology of China(No.2003CB515405,No.2005CB522406)+1 种基金the Program for Changjiang Scholars and Innovative Research Team of Ministry of Education of ChinaShanghai Municipal Commission for Science and Technology(No.06JC14008).
文摘Objective To investigate whether environmental cues associated with different properties of morphine could regulate the extracellular levels of glutamate and y-aminobutyric acid (GABA) in the hippocampal ventral subiculum, which play a critical role in the reinstatement of drug-seeking behavior induced by environmental cues. Methods Conditioning place preference (CPP) and conditioning place aversion (CPA) models were used to establish environment associated with rewarding and aversive properties of morphine respectively. Microdialysis and high performance liquid chromatography were used to measure the extracelluar level of glutamate and GABA in the ventral subiculum under these environmental cues. Results Exposure to the environmental cues associated with rewarding properties of morphine resulted in a decrease (approximately 11%) of extracellular level of GABA in ventral subiculum, and exposure to the environmental cues associated with aversive properties of morphine resulted in an increase (approximately 230%) of extracellular level of glutamate in ventral subiculum. Conclusion Environmental cues associated with different properties of morphine modulate the release of distinct neurotransmitters in the hippocampal ventral subiculum possibly through different neural circuit.
基金the National Natural Science Foundation of China (No. 60601010)the Natural Science Foundation of Heilongjiang Province, China (No. D200606)+1 种基金the Postdoctoral Fund of Heilongjiang province, China (No. LBH-Z06110)the Scientific Re- search Fund of Educational Department of Heilongjiang Province, China (No. 11531112).
文摘Objective To observe the effects of y-aminobutyric acid (GABA) on the electric activities of pain-excited neurons (PEN) in nucleus accumbens (NAc) in central nervous system (CNS) of morphine-dependent rats. Methods After GABA or the GABAA-receptor antagonist, bicuculline (Bic), was injected into cerebral ventricles or NAc, right sciatic nerve was stimulated by electrical pulses, which was considered as traumatic pain stimulation. Extracellular recordings methods were used to record the electric activities of PEN in NAc. Results When GABA was injected into intracerebroventricle (ICV) as well as NAc, it could decrease the pain-evoked discharge frequency and prolong the latency of PEN. Bic could interdict the above effects of GABA on the electric activities of PEN. Conclusion Exogenous GABA might have an inhibitory effect on the central pain adjustment. Furthermore, GABA and GABAA receptor participate and mediate the traumatic information transmission process in CNS.
文摘γ-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1), the present study explored the pathophysiological role of GAT1 in epileptogenesis. Though displaying no spontaneous seizure activity, these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid. In addition, the GABAA receptor and glutamate transporters are up-regulated in transgenic mice, which perhaps reflects a compensatory or corrective change to the elevated level of GAT1. These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission, and seizure susceptibility can be altered by neurotransmitter transporters.
基金grants from National Science Foundation!No.39630140
文摘γ-Aminobutyric acid and GABAergic receptors were previously reported to be distributed in reproductive systems besides CNS and predicted to participate in the modulation of testicular function. γ-Aminobutyric acid transporter was implicated to be involved in this process. However, the potential role of γ-aminobutyric transporter in testis has not been explored. In this study, we investigated the existence of mouse γ-aminobutyric acid transporter subtype I (mGAT1) in testis. Wild-type and transgenic mice, which overexpressing mGAT1 in a variety of tissues, especially in testis, were primarily studied to approach the profile of mGAT1 in testis. Mice with overexpressed mGAT1 develop normally but with reduced mass and size of testis as compared with wild-type. Testicular morphology of transgenic mice exhibited overt abnormalities including focal damage of the spermatogenic epithelium accompanied by capillaries proliferation and increased diameter of seminiferous tubules lumen. Reduced number of spermatids was also found in some seminiferous tubules. Our results clearly demonstrate the presence of GAT1 in mouse testis and imply that GAT1 is possibly involved in testicular function.
基金the National Natural Science Foundation of China(81774162)。
文摘Objective:The present study aimed to investigate the effect of seasonal variation on neurotransmitter release in the hippocampus of normal rats and rats with pineal excision.Methods:Two time points,the summer and winter solstice,which are the longest and shortest days of the year,respectively,were selected.Male Spraguee Dawley rats that underwent a sham operation without pineal excision were included as a control group.The concentrations of 5-hydroxytryptamine(5-HT)andγ-aminobutyric acid(GABA)were determined by radioimmunoassays and enzyme-linked immunosorbent assays,respectively.Results:In the winter,the 5-HT and GABA levels in normal rats exhibited a significant difference compared with those in the operation group(P<.01).A difference was also noted in GABA levels between the normal group and the sham operation group(P<.05).The concentrations of 5-HT and GABA in the hippocampal tissues of the normal group exhibited a seasonal rhythm consisting of elevation during the summer and reduction during the winter(P<.01),while the GABA levels in the sham operation group exhibited a significant difference,with elevation during the summer and reduction during the winter(P<.01).In the operation group,GABA showed the same trend(P<.01).Conclusion:The seasonal rhythm of neurotransmitter secretion by the hippocampus(5-HT and GABA)consisted of elevation during the summer and reduction during the winter.During the winter,the pineal gland exhibited a reverse regulatory effect on the secretion of 5-HT and GABA in the hippocampus,and it exhibited seasonal selectivity with regard to the regulation of 5-HT.
基金supported by the National Natural Science Foundation of China (Nos. 81374046 and 81373506)
文摘Near-infrared spectroscopy (NIRS) with its fast and nondestructive advantages can be qualified for the real-time quantitative analysis. This paper demonstrates that NIRS combined with partial least squares (PLS) regression can be used as a rapid analytical method to simultaneously quantify L-glutamic acid (L- GIu) and γ-aminobutyric acid (GABA) in a biotransformation process and to guide the optimization of production conditions when the merits of NIRS are combined with response surface methodology. The high performance liquid chromatography (HPLC) reference analysis was performed by the o-phthaldialdehyde pre-column derivatization. NIRS measurements of two batches of 141 samples were firstly analyzed by PLS with several spectral pre-processing methods. Compared with those of the HPLC reference analysis, the resulting determination coefficients (R2), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) of the external validation for the L-GIu concentration were 99.5%, 1.62 g/L, and 11.3, respectively. For the GABA concentration, R2, RMSEP, and RPD were 99.8%, 4.00 g/L, and 16.4, respectively. This NIRS model was then used to optimize the biotransformation process through a Box- Behnken experimental design. Under the optimal conditions without pH adjustment, 200 gjL L-GIu could be catalyzed by 7148 U/L glutamate decarboxylase (GAD) to GABA, reaching 99% conversion at the fifth hour. NIRS analysis provided timely information on the conversion from L-GIu to GABA. The results suggest that the NIRS model can not only be used for the routine profiling of enzymatic conversion, providing a simple and effective method of monitoring the biotransformation process of GABA, but also be considered to be an optimal tool to guide the optimization of production conditions.
文摘To investigate the effect of propofol on the release of glutamate and γ-aminobutyric acid (GABA) from rat hippocampal synatosomes, synaptosomes was made from hippocampus and incubated with artificial cerebrospinal fluid (aCSF). With the experiment of Ca^2+-dependent release of glutamate and GABA, dihydrokainic acid (DHK) and nipectic acid were added into aCSF. For the observation of Ca^2+-independent release of glutamate and GABA, no DHK, nipectic acid and Ca^2+ were added from aCSF. The release of glutamate and GABA were evoked by 20 μmol/L veratridine or 30 mmol/L KCh The concentration of glutamate and GABA in aCSF was measured by using high-performance liquid chromatography (HPLC). 30, 100 arid 300 μmol/L propofol significantly inhibited veratridine-evoked Ca^2+-dependent release of glutamate and GABA (P〈0. 01 or P〈0. 05), However, propofol showed no effect on elevated KCl-evoked Ca^2+-dependent release of glutamate and GABA (P〉0, 05), Veratridine or elevated KCI evoked Ca^2+-independent release of glutamate and GABA was not affected significantly by propofol (P〉0.05). Propofol could inhibit Ca^2+- dependent release of glutamate and GABA, However, it has no effect on the Ca^2+-independent release of glutamate and GABA,
基金financial support from the Taishan Scholar Project of Shandong Province under Grant No. tsqn201812098the Shandong Provincial Natural Science Foundation (ZR2020MF103, ZR2019MF057, and ZR2019MA066)+1 种基金National Natural Science Foundation of China (21701080)Postgraduate Research & Practice Innovation Program of Jiangsu Province.
文摘The stability issue has become one of the main challenges for the commercialization of perovskite solar cells(PSCs).Formamidinium(FA)-based perovskites have shown great promise owing to their improved thermal and moisture stability.However,these perovskites are suffering from phase transition and separation.Here,a method of incorporating of γ-aminobutyric acid(GABA) and cesium cations into FAPbl_(3) is developed to improve the phase stability.It is demonstrated that the crystallinity of α-FAPbl_(3) phase is greatly improved and the phase transition temperature is significantly dropped.The resultant solar cell therefore obtains a champion power conversion efficiency(PCE) of 23.71%,which is one of the highest efficiencies for methylammonium-free PSCs.Furthermore,it shows an impressively enhanced stability under illumination,exhibiting the great potential of FA-based perovskites for efficient and stable solar cells.
文摘Transgenic mice ubiquitously overexpressing murine γ aminobutyric acid transporter subtype Ⅰ were created. Unexpectedly, these mice markedly exhibited heritable obesity, which features significantly increased body weight and fat deposition. Behavioral examination revealed that transgeinc mice have slightly reduced spontaneous locomotive capacity and altered feeding pattern. Tills preliminary finding indicates that the inappropriate level of γ-aminobutyric acid transporters may be directly or indirectly involved in the pathogenic mechanism underlying certain types of obesity.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government(No.2008-0061604)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF),whichis funded by the Ministry of Science,ICT & Future Planning 18(2014R1A1A1006622)
文摘Nonalcoholic steatohepatitis(NASH) is one of the most common liver diseases and a major cause of liver fibrosis worldwide.r-Aminobutyric acid(GABA) is one of the most abundant inhibitory neurotransmitters in the central nervous system.Recently,it has been reported that GABAergic signaling pathways are found in various non-neuronal tissues including the immune system and play a functional role.In the present study,we investigated whether administration of GABA has effects on NASH through its immunomodulatory effects.To test this hypothesis,C57BL/6 mice were fed a methionine-choline-deficient(MCD) diet for 8 weeks.After four weeks into MCD feeding,mice were provided with plain water(control) or water containing 2 mg/mL of GABA for the subsequent 4 weeks.Using this MCD diet-induced NASH model,we found that mice receiving GABA showed more severe steatohepatitis and liver fibrosis than control mice.This increased liver damage was confirmed by higher levels of serum alanine transaminase(ALT) and aspartate aminotransferase(AST) compared to the control group.In accordance with increased liver steatohepatitis,NASH-related and inflammatory gene expression(collagen al,tissue inhibitor of metalloproteinase-1,TNF-α) in the liver was markedly increased in GABA-treated mice.Furthermore,GABA directly enhanced production of inflammatory cytokines including IL-6 and TNF-α in LPS activated RAW macrophage cells and increased TIB-73 hepatocyte death.Such effects were abolished when GABA was treated with bicuculline,a competitive antagonist of GABA receptors.These results suggest that oral administration of GABA may be involved in changes of the liver immune milieu and conferred detrimental effects on NASH progression.
基金Supported by National Natural Science Foundation of China(No.3997023939800044)+1 种基金FoundationforUniversityKeyTeacherbytheMinistryofEducationofChinatheNationalProgramofBasicResearchofChina(G1999054000).
文摘Under physiological conditions, γ-aminobutyric acid poorly crosses the blood-brain barrier. It is likely that a non-toxic derivative of γ-aminobutyric acid which enters the brain easily will have useful anticonvulsant activity. 16 derivatives of γ-aminobutyric acid with an imine link to a lipophilic carrier were prepared and tested for anticonvulsant activity; six compounds show anticonvulsant activity.
基金This work was supported by Natural Science Foundation of Zhe-jiang Province(LY23B060001)Zhejiang Provincial Key R&D Pro-gram of China(2021C02049)+2 种基金China Postdoctoral Science Founda-tion(2020M671337)National Natural Science Foundation of China(31670804,31971372)Ningbo"Scientific and Technological In-novation 2025″Key Project(2020Z080,2020Z088).
文摘Biosynthesis of the functional factor𝛾γ-aminobutyric acid(GABA)in bacteria involves two key proteins an intra-cellular glutamate decarboxylase(GadB)and a membrane-bound antiporter(GadC).Efficient co-expression of suitable GadB and GadC candidates is crucial for improving GABA productivity.In this study,gadBΔC11 of Lacti-plantibacillus plantarum and gadCΔC41 of Escherichia coli were inserted into the designed double promoter(P T7lac and P BAD)expression system.Then,E.coli Lemo21(DE3)was chosen as the host to minimize the toxic effects of GadCΔC41 overexpression.Furthermore,a green and high-efficiency GABA synthesis system using dormant engineered Lemo21(DE3)cells as biocatalysts was developed.The total GABA yield reached 829.08 g/L with a 98.7%conversion ratio within 13 h,when engineered E.coli Lemo21(DE3)cells were concentrated to an OD 600 of 20 and reused for three cycles in a 3 M L-glutamate solution at 37℃,which represented the highest GABA productivity ever reported.Overall,expanding the active pH ranges of GadB and GadC toward physiological pH and employing a tunable expression host for membrane-bound GadC production is a promising strategy for high-level GABA biosynthesis in E.coli.
基金supported by the Youth Science and Technology Innovation Special Foundation of Xinjiang Production and Construction Corps, China, No. 2010JC33
文摘The γ-aminobutyric acid neurotransmitter in the spinal cord dorsal horn plays an important role in pain modulation through primary afferent-mediated presynaptic inhibition. The weakening of γ-aminobutyric acid-mediated presynaptic inhibition may be an important cause of neuropathic pain. γ-aminobutyric acid-mediated presynaptic inhibition is related to the current strength of γ-aminobutyric acid A receptor activation. In view of this, the whole-cell patch-clamp technique was used here to record the change in muscimol activated current of dorsal root ganglion neurons in a chronic constriction injury model. Results found that damage in rat dorsal root ganglion neurons following application of muscimol caused concentration-dependent activation of current, and compared with the sham group, its current strength and γ-aminobutyric acid A receptor protein expression decreased. Immunofluorescence revealed that γ-aminobutyric acid type A receptor α2 subunit protein expression decreased and was most obvious at 12 and 15 days after modeling. Our experimental findings confirmed that the y-aminobutyric acid type A receptor α2 subunit in the chronic constriction injury model rat dorsal root ganglion was downregulated, which may be one of the reasons for the reduction of injury in dorsal root ganglion neurons following muscimol-activated currents.
基金the Youth Research Foundation of Qingdao University, No. 2007
文摘Muscarinic receptors and nicotine receptors can increase free calcium ion levels in the facial nucleus via different channels following facial nerve injury. In addition, γ-aminobutyric acid A (GABAA) receptors have been shown to negatively regulate free calcium ion levels in the facial nucleus by inhibiting nicotine receptors. The present study investigated the influence of GABAA, γ-aminobutyric acid B (GABAB) and C (GABAc) receptors on muscarinic receptors in rats with facial nerve injury by confocal laser microscopy. GABAA and GABAB receptors exhibited significant dose-dependent inhibitory effects on increased muscarinic receptor-mediated free calcium ion levels following facial nerve injury. Results showed that GABAA and GABAB receptors negatively regulate muscarinic receptor effects and interplay with cholinergic receptors to regulate free calcium ion levels for facial neural regeneration.
基金supported by the Optional Research Project of China Rehabilitation Research Center,No.2014-7the Sub-Project under National“Twelfth Five-Year”Plan for Science&Technology Support Project,No.2011BAI08B11
文摘Melatonin and gamma-aminobutyric acid(GABA) have been shown to regulate sleep. The nocturnal concentrations of melatonin, GABA and total antioxidants may relate to insomnia in stroke patients. In this prospective single-center non-randomized controlled clinical trial performed in the China Rehabilitation Research Center, we analyzed the relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke. Patients during rehabilitation of stroke were recruited and assigned to the insomnia group or non-insomnia group. Simultaneously, persons without stroke or insomnia served as normal controls. Each group contained 25 cases. The primary outcome was nocturnal concentrations of melatonin, GABA and total antioxidants in peripheral blood. The secondary outcomes were Pittsburgh Sleep Quality Index, Insomnia Severity Index, Epworth Sleepiness Scale, Fatigue Severity Scale, Morningness-Eveningness Questionnaire(Chinese version), and National Institute of Health Stroke Scale. The relationship of nocturnal concentrations of melatonin, GABA and total antioxidants with insomnia after stroke was analyzed and showed that they were lower in the insomnia group than in the non-insomnia group. The severity of stroke was higher in the insomnia group than in the non-insomnia group. Correlation analysis demonstrated that the nocturnal concentrations of melatonin and GABA were associated with insomnia after stroke. This trial was registered at Clinical Trials.gov, identifier: NCT03202121.
基金This research was supported by grants from the National Nature Science Foundation of China
文摘Background: Our previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage, excessive apoptosis, and dysfunction, its initial reason is intracellular calcium overload in hippocampus triggered by N-methyl-D-aspartic acid receptor (NMDAR) over-activation. NMDAR activation can be suppressed by y-aminobutyric acid (A) receptor (GABAAR). Whether GABAAR can prevent intense exercise-induced hippocampus apoptosis, damage, or dysfunction will be studied in this study. Methods: According to dose test, rats were randomly divided into control (Con), Ex, muscimol (MUS, 0.1 mg/kg) and bicuculline (BIC, 0.5 mg/kg) groups, then all rats underwent once swimming Ex except ones in Con group only underwent training, lntracellular free calcium concentration ([Ca2+]i) was measured by Fura-2-acetoxymethyl ester; glial fibrillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were also performed; apoptosis were displayed by dUTP nick end labeling (TUNEL) stain; endoplasmic reticulum stress-induced apoptosis pathway was detected by Western blotting analysis; Morris water maze was used to detect learning ability and spatial memory. Results: The appropriate dose was 0.1 mg/kg for MUS and 0.5 mg/kg for BIC. Ex group showed significantly increased [Ca^2+]i and astrogliosis; TUNEL positive cells and levels of GFAP, B cell lymphoma-2 (Bcl-2) associated X protein (Bax), caspase-3, caspase-12 cleavage, CCAAT/enhancer binding protein homologous protein (CHOP), and p-Jun amino-terminal kinase (p-JNK) in Ex group also raised significantly compared to Con group, while SYP, synapse plasticity, and Bcl-2 levels in Ex group were significantly lower than those in Con group. These indexes were back to normal in MUS group. BIC group had the highest levels of [Ca^2+]i, astrogliosis, TUNEL positive cell, GFAP, Bax, caspase-3, caspase-12 cleavage, CHOP, and p-JNK, it also gained the lowest SYP, synapse plasticity, and Bcl-2 levels among all groups. Water maze test showed that Ex group had longer escape latency (EL) and less quadrant dwell time than Con group; all indexes between MUS and Con groups had no significant differences; BIC had the longest EL and least quadrant dwell time among all groups. Conclusions: Activation of GABAAR could prevent intense exercise-induced synapses damage, excessive apoptosis, and dysfunction of hippocampus.