Fluid catalytic cracking(FCC)is still a key process in the modern refining industry,in which nickel contamination of the FCC catalyst can significantly increase the dry gas and coke yields and thus seriously affect th...Fluid catalytic cracking(FCC)is still a key process in the modern refining industry,in which nickel contamination of the FCC catalyst can significantly increase the dry gas and coke yields and thus seriously affect the stability of the FCC unit.Therefore,in this work,B_(2)O_(3)-modified SBA-15 molecular sieves(B_(2)O_(3)/SBA-15)with different B_(2)O_(3) contents were prepared,characterized,and further used as matrix component in the preparation of Ni-tolerant FCC catalyst.The characterization results indicated that the B_(2)O_(3)/SBA-15 samples possessed excellent Ni passivation ability and kept the characteristic structure of the parent SBA-15 such as highly ordered mesopores,large surface area,and high pore volume,which enabled the B_(2)O_(3)/SBA-15 sample to greatly improve the Ni tolerance of the prepared FCC catalyst.The heavy oil catalytic cracking tests indicated that,under the same Ni contamination conditions,the dry gas,coke,and heavy oil yields of the FCC catalyst containing B_(2)O_(3)/SBA-15 decreased by 0.92%,1.65%,and 1.26%,respectively,compared with those of conventional FCC catalyst,while the total liquid yield increased by 3.83%.展开更多
Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface ...Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface area and many acidic sites.Compared with bulk S2O82–-Fe2O3,Br?nsted acid catalysts and other reported catalysts,SFS with an Fe2O3 loading of 30%(SFS-30)exhibits an outstanding activity in the probe reaction of alcoholysis of styrene oxide by methanol with 100%yield.Moreover,SFS-30 also shows a more excellent catalytic performance than bulk S2O82–-Fe2O3 towards the alcoholysis of other ROHs(R=C2H5-C4H9).Lewis and Bronsted acid sites on the SFS-30 surfaces are confirmed by pyridine adsorbed infrared spectra.The highly efficient catalytic activity of SFS-30 may be attributed to the synergistic effect from the nano-effect of S2O82–-Fe2O3 nanoparticles and the mesostructure of SBA-15.Finally,SFS-30 shows a good catalytic reusability,providing an 84.1%yield after seven catalytic cycles.展开更多
Dehydrogenation of propane on Pt or Pt Sn catalyst over Al2O3 or SBA-15 support was investigated. The catalysts were characterized by CO-pulse chemisorption, thermogravimetry, temperature-programmed-reduction of H2,an...Dehydrogenation of propane on Pt or Pt Sn catalyst over Al2O3 or SBA-15 support was investigated. The catalysts were characterized by CO-pulse chemisorption, thermogravimetry, temperature-programmed-reduction of H2,and diffuse reflectance infrared Fourier transform spectroscopy of absorbed CO. The results show that the platinum species is in oxidation state in the catalyst on Al2O3 support, so the catalyst must be reduced in H2 before dehydrogenation reaction. Addition of Sn improves the Pt dispersion, but the catalyst deactivates rapidly because of the coke formation. The interaction of Pt and Al2O3 is strong. On SBA-15 support, the platinum species is completely reduced to Pt0 in the calcination process, so the reduction is not needed. Addition of Sn improves the activity and selectivity of the catalyst. The interaction of Pt and SBA-15 is weak, so it is easy for Pt particles to sinter.展开更多
Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-...Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-redoping method in a neutral medium. The products were characterized by TEM, XRD, UV-Vis, four-probe method, and magnetometer. The results indicate that the electrical and magnetic properties of the nanocomposites strongly depend on γ-Fe 2O 3 content. With the increase of γ-Fe 2O 3 content, the electrical conductivity is decreased and saturation magnetization is increased.展开更多
基金National Natural Science Foundation of China(grant number:21902008)Doctor Research Program of Shandong University of Technology(No.4041/420117).
文摘Fluid catalytic cracking(FCC)is still a key process in the modern refining industry,in which nickel contamination of the FCC catalyst can significantly increase the dry gas and coke yields and thus seriously affect the stability of the FCC unit.Therefore,in this work,B_(2)O_(3)-modified SBA-15 molecular sieves(B_(2)O_(3)/SBA-15)with different B_(2)O_(3) contents were prepared,characterized,and further used as matrix component in the preparation of Ni-tolerant FCC catalyst.The characterization results indicated that the B_(2)O_(3)/SBA-15 samples possessed excellent Ni passivation ability and kept the characteristic structure of the parent SBA-15 such as highly ordered mesopores,large surface area,and high pore volume,which enabled the B_(2)O_(3)/SBA-15 sample to greatly improve the Ni tolerance of the prepared FCC catalyst.The heavy oil catalytic cracking tests indicated that,under the same Ni contamination conditions,the dry gas,coke,and heavy oil yields of the FCC catalyst containing B_(2)O_(3)/SBA-15 decreased by 0.92%,1.65%,and 1.26%,respectively,compared with those of conventional FCC catalyst,while the total liquid yield increased by 3.83%.
文摘Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface area and many acidic sites.Compared with bulk S2O82–-Fe2O3,Br?nsted acid catalysts and other reported catalysts,SFS with an Fe2O3 loading of 30%(SFS-30)exhibits an outstanding activity in the probe reaction of alcoholysis of styrene oxide by methanol with 100%yield.Moreover,SFS-30 also shows a more excellent catalytic performance than bulk S2O82–-Fe2O3 towards the alcoholysis of other ROHs(R=C2H5-C4H9).Lewis and Bronsted acid sites on the SFS-30 surfaces are confirmed by pyridine adsorbed infrared spectra.The highly efficient catalytic activity of SFS-30 may be attributed to the synergistic effect from the nano-effect of S2O82–-Fe2O3 nanoparticles and the mesostructure of SBA-15.Finally,SFS-30 shows a good catalytic reusability,providing an 84.1%yield after seven catalytic cycles.
文摘Dehydrogenation of propane on Pt or Pt Sn catalyst over Al2O3 or SBA-15 support was investigated. The catalysts were characterized by CO-pulse chemisorption, thermogravimetry, temperature-programmed-reduction of H2,and diffuse reflectance infrared Fourier transform spectroscopy of absorbed CO. The results show that the platinum species is in oxidation state in the catalyst on Al2O3 support, so the catalyst must be reduced in H2 before dehydrogenation reaction. Addition of Sn improves the Pt dispersion, but the catalyst deactivates rapidly because of the coke formation. The interaction of Pt and Al2O3 is strong. On SBA-15 support, the platinum species is completely reduced to Pt0 in the calcination process, so the reduction is not needed. Addition of Sn improves the activity and selectivity of the catalyst. The interaction of Pt and SBA-15 is weak, so it is easy for Pt particles to sinter.
文摘Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-redoping method in a neutral medium. The products were characterized by TEM, XRD, UV-Vis, four-probe method, and magnetometer. The results indicate that the electrical and magnetic properties of the nanocomposites strongly depend on γ-Fe 2O 3 content. With the increase of γ-Fe 2O 3 content, the electrical conductivity is decreased and saturation magnetization is increased.