Based on ab initio density functional theory calculations,we demonstrate that two carbon-doped boron nitride analog ofα-graphyne structures,B_(3) C_(2) N_(3)) and BC_(6) N monolayers,are two-dimensional direct wide b...Based on ab initio density functional theory calculations,we demonstrate that two carbon-doped boron nitride analog ofα-graphyne structures,B_(3) C_(2) N_(3)) and BC_(6) N monolayers,are two-dimensional direct wide band gap semiconductors,and there are two inequivalent valleys in the vicinities of the vertices of their hexagonal Brillouin zones.Besides,B_(3)C_(2)N_(3) and BC_(6)N monolayers exhibit relatively high carrier mobilities,and their direct band gap feature is robust against the biaxial strain.More importantly,the energetically most favorable B_(3)C_(2)N_(3) and BC_(6)N bilayers also have direct wide band gaps,and valley polarization could be achieved by optical helicity.Finally,we show that BC_(6) N monolayer might have high efficiency in photo-splitting reactions of water,and a vertical van der Waals heterostructure with a type-Ⅱenergy band alignment could be designed using B_(3)C_(2)N_(3)and BC_(6)N monolayers.All the above-mentioned characteristics make B_(3)C_(2)N_(3) and BC_(6)N monolayers,bilayers,and their heterostructures recommendable candidates for applications in valleytronic devices,metal-free photocatalysts,and photovoltaic cells.展开更多
Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by unifor...Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by uniformly dis-persing amorphous Si nanodots(SiNDs)in carbon nanospheres(SiNDs/C)that are welded on the wall of the macroporous carbon framework(MPCF)by vertical graphene(VG),labeled as MPCF@VG@SiNDs/C.The high dispersity and amor-phous features of ultrasmall SiNDs(~0.7 nm),the flexible and directed electron/Li+transport channels of VG,and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites,rapid Li+transport path,and unique low-strain property during Li+storage.Consequently,the MPCF@VG@SiNDs/C exhibits high cycle stability(1301.4 mAh g^(-1) at 1 A g^(-1) after 1000 cycles without apparent decay)and high rate capacity(910.3 mAh g^(-1),20 A g^(-1))in half cells based on industrial electrode standards.The assembled pouch full cell delivers a high energy density(1694.0 Wh L^(-1);602.8 Wh kg^(-1))and an excellent fast-charging capability(498.5 Wh kg^(-1),charging for 16.8 min at 3 C).This study opens new possibilities for preparing advanced silicon-carbon com-posite anodes for practical applications.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
Adsorption characteristics of CO adsorbed on pristine 4,12,2-graphyne(4,12,2-G)and Fe-doped 4,12,2-graphyne(Fe-4,12,2-G)are studied by first-principles calculations.It is shown that CO is only physically adsorbed on p...Adsorption characteristics of CO adsorbed on pristine 4,12,2-graphyne(4,12,2-G)and Fe-doped 4,12,2-graphyne(Fe-4,12,2-G)are studied by first-principles calculations.It is shown that CO is only physically adsorbed on pristine 4,12,2-G.Fe atoms can be doped into 4,12,2-G stably and lead to band gap opening.After doping,the interaction between Fe-4,12,2-G and CO is significantly enhanced and chemisorption occurs.The maximum adsorption energy reaches-1.606 e V.Meanwhile,the charge transfer between them increases from 0.009e to 0.196e.Moreover,the electric field can effectively regulate the adsorption ability of the Fe-4,12,2-G system,which is expected to achieve the capture and release of CO.Our study is helpful to promote applications of two-dimensional carbon materials in gas sensing and to provide new ideas for reversible CO sensor research.展开更多
Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds.Despite great progress in the preparation of a variety of colored silks,fluorescent silk with enhanced mechanical ...Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds.Despite great progress in the preparation of a variety of colored silks,fluorescent silk with enhanced mechanical properties has yet to be explored.In this study,we report on the fabrication of intrinsically super-strong fluorescent silk by feeding Bombyx mori silkworm carbon nanodots(CNDs).The CNDs were incorporated into silk fibroin,hindering the conformation transformation,confining crystallization,and inducing orientation of mesophase.The resultant silk exhibited super-strong mechanical properties with breaking strength of 521.9±82.7 MPa and breaking elongation of 19.2±4.3%,improvements of 55.1%and 53.6%,respectively,in comparison with regular silk.The CNDs-reinforced silk displayed intrinsic blue fluorescence when exposed to 405 nm laser and exhibited no cytotoxic effect on cells,suggesting that multi-functional silks would be potentially useful in bioimaging and other applications.展开更多
In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing de...In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing demands for Ni worldwide,simplifying the fabrication process,increasing Ni recycling,and reducing waste are tangible sustainability goals.Here,binder-free,heteroatom-free,and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method.Typically,active Ni nanodot(NiND)clusters are electrodeposited on Ni foam(NF)in Ni(NO3)2 acetonitrile solution.After drying in air,NiO/NiND composites are obtained,leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode.The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials(10ηHER= 119 mV and 50ηOER=360 mV)and can promote water catalysis at 1.70 V@ 10mA cm-2.More importantly,the recovery of raw materials(NF and Ni(NO3)2)is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes.Additionally,a large-sized(S^70 cm2)NiO/NiNDs@NF catalytic electrode with high durability has also been constructed.This method provides a simple and fast technology to construct high-performance,low-cost,and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.展开更多
Molybdenum phosphide(MoP),owing to its abundant reserve and high theoretical capacity,is regarded as a promising anode material for potassium-ion batteries.However,it still suffers from the problems of acute volume ex...Molybdenum phosphide(MoP),owing to its abundant reserve and high theoretical capacity,is regarded as a promising anode material for potassium-ion batteries.However,it still suffers from the problems of acute volume expansion and weak diffusion kinetics.This study reports a simple method to synthesize a composite of molybdenum phosphide and porous carbon(MoP@PC)through simple mixing and annealing treatment.In the MoP@PC,lots of MoP nanodots with an average diameter of about 4 nm uniformly embedded in the petal-like porous carbon.The MoP@PC shows reversible capacities of 330 mAh g^(-1) at100 mA g^(-1) after 100 cycles,and ultra-long cycling stability with a capacity of 240 mAh g^(-1) after 1000 cycles at 1 A g^(-1) and 161 mAh g^(-1) after 1000 cycles at 5 A g^(-1).The structure of MoP@PC after charging-discharging cycles is also investigated by high resolution transmission electron microscope(HRTEM)and the result shows that MoP can still maintain the nanodot morphology without any agglomeration after 1000 cycles at 5 A g^(-1).The storage mechanism of potassium ions was studied as well,which reveals that MoP and potassium ion have a conversion reaction.展开更多
Development of highly active and stable non-noble electrocatalysts with well-defined nanostructures is crucial for efficient hydrogen evolution reaction(HER). Herein, a novel three-dimensional(3D) selfsupported electr...Development of highly active and stable non-noble electrocatalysts with well-defined nanostructures is crucial for efficient hydrogen evolution reaction(HER). Herein, a novel three-dimensional(3D) selfsupported electrode consists of vanadium nitride(VN) nanodots and Co nanoparticles co-embedded and highly active single Co atoms anchored in N-doped carbon nanotubes supported on carbon cloth(VN-Co@CoSAs-NCNTs/CC) is fabricated via a one-step in situ nanoconfined pyrolysis strategy, which shows remarkable enhanced HER electrocatalytic activity in acidic medium. During pyrolysis, the formed VN nanodots induce the generation of atomic Co Nxsites in NCNTs, contributing to superior electrocatalytic activity. Experimental and density functional theory(DFT) calculation results reveal that the electrode has multiple accessible active sites, fast reaction kinetics, low charge/mass transfer resistances,high conductivity, as well as downshifted d-band center with a thermodynamically favorable hydrogen adsorption free energy(△G_(H·)), all of which greatly boost the HER performance. As a result, the VNCo@CoSAs-NCNTs/CC electrode displays superb catalytic performance toward HER with a low overpotential of 29 mV at 10 mA cm^(-2) in acidic medium, which could maintain for at least 60 h of stable performance. This work opens a facile avenue to explore low-cost, high performance, but inexpensive metals/nitrogen-doped carbon composite electrocatalysts for HER.展开更多
Artificial photosynthesis has gained increasing interest as a promising solution to the worldwide energy and environmental issues. A crucial requirement for realizing a sustainable system for artificial photosynthesis...Artificial photosynthesis has gained increasing interest as a promising solution to the worldwide energy and environmental issues. A crucial requirement for realizing a sustainable system for artificial photosynthesis is to explore low cost, highly-efficient and stable photoactive materials. Carbon nanodots(CNDs) have attracted considerable attention owing to their low cost, tunable chemistry and unique light-harvesting capability. Previous review articles have highlighted the photocatalytic and photoelectrocatalytic applications of CNDs and CNDs-based composite photocatalysts. However, the control of the separation and transfer processes of photogenerated electron/hole pairs in CNDs has not been reviewed.This review summarizes the recent progress in the design of CNDs as new light-harvesting materials and highlights their applications in photocatalytic hydrogen production, CO2 photoreduction and environmental remediation. Strategies that have been employed to modulate the separation and transfer kinetics of photogenerated charge carriers in CNDs are discussed in detail. The challenges and new directions in this emerging area of research are also proposed.展开更多
Shape-induced phase transition of vortex domain structures (VDSs) in BaTiO3 (BT) nanodots under open circuit boundary condition have been investigated using an effective Hamiltonian method. Our calculation indicat...Shape-induced phase transition of vortex domain structures (VDSs) in BaTiO3 (BT) nanodots under open circuit boundary condition have been investigated using an effective Hamiltonian method. Our calculation indicates the tetragonal VDS missing in cubic BT nanodots can be induced by varying the shape of a nanodot from cube to platelet. Interestingly, a novel VDS is found in BT nanoplatelets in our simulations. Further investigation shows that it is a result of compromise between the ground state and the symmetry of the shape of the nanodot. Furthermore, based on the novel VDS, routes of controlling VDSs governed by homogeneous electric field and uniform stress are discussed. In particular, our results show the possibility of designing multi-states devices based on a single VDS. ~ 2017 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.展开更多
Laser-induced forward transfer(LIFT)is a direct-writing technique capable of depositing a single dot smaller than the laser wavelength at small shot energy through the laser-induced dot transfer(LIDT)technique.To depo...Laser-induced forward transfer(LIFT)is a direct-writing technique capable of depositing a single dot smaller than the laser wavelength at small shot energy through the laser-induced dot transfer(LIDT)technique.To deposit a single nanodot in a single shot of laser irradiation,a liquid nanodrop is transferred from donor to receiver and finally solidified via a solid–liquid–solid(SLS)process.In conventional LIDT experiments,multi-shots with step scanning have been used to form array structures.However,interference laser processing can achieve an arrayed process and generate a periodic structure in a single shot.In this study,a femtosecond laser interference pattern was first applied to LIDT,and an array of nanodots was successfully deposited in a single shot,producing the following unit structures:a single dot,adjoining dots,and stacking dots.The diameter of the smallest nanodot was 355 nm,and the narrowest gap between two adjoining nanodots was 17.2 nm.The LIDT technique produces high-purity,catalyst-free that do not require post-cleaning or alignment processes.Given these significant advantages,LIDT can expand the usability of nanodots in a wide range of fields.展开更多
ZrO_2 nanodots are successfully prepared on LaAlO_3(LAO)(100) substrates by photo-assisted metal-organic chemical vapor deposition(MOCVD). It is indicated that the sizes and densities of ZrO_2 nanodots are contr...ZrO_2 nanodots are successfully prepared on LaAlO_3(LAO)(100) substrates by photo-assisted metal-organic chemical vapor deposition(MOCVD). It is indicated that the sizes and densities of ZrO_2 nanodots are controllable by modulating the growth temperature, oxygen partial pressure, and growth time. Meanwhile, the microwires are observed on the surfaces of substrates. It is found that there is an obvious competitive relationship between the nanodots and the microwires. In a growth temperature range from 500℃ to 660℃, the microwires turn longest and widest at 600℃, but in contrast, the nanodots grow into the smallest diameter at 600℃. This phenomenon could be illustrated by the energy barrier, decomposition rate of Zr(tmhd)_4, and mobility of atoms. In addition, growth time or oxygen partial pressure also affects the competitive relationship between the nanodots and the microwires. With increasing oxygen partial pressure from 451 Pa to 75_2 Pa,the microwires gradually grow larger while the nanodots become smaller. To further achieve the controllable growth, the coarsening effect of ZrO_2 is modified by varying the growth time, and the experimental results show that the coarsening effect of microwires is higher than that of nanodots by increasing the growth time to quickly minimize ZrO_2 energy density.展开更多
Large scale tungsten nanowires and tungsten nanodots are prepared in a controllable way. The preparation is based on mechanisms of chemical vapor transportation and phase transformation during the reduction of ammoniu...Large scale tungsten nanowires and tungsten nanodots are prepared in a controllable way. The preparation is based on mechanisms of chemical vapor transportation and phase transformation during the reduction of ammonium metatungstate (AMT) in H2. The AMT is first encapsulated into the hollow core of nanostructured carbon with hollow macroporous core/mesoporous shell (NC-HMC/MS) and forms nanorods, which are the precursors of both tungsten nanowires and tungsten nanodots. Just by controlling H2 flow rate and heating rate in the reduction process, the AMT nanorods could turn into nanowires (under low rate condition) or nanodots (under high rate condition). Besides, via heat treatment at 1200 ℃, the as-obtained nano-sized tungsten could convert into W2C nanorods or WC nanodots respectively. Furthermore, the diameter of the as-obtained tungsten or tungsten carbide is confined within 50 nm by the NC-HMC/MS, and no agglomeration appears in the obtained nanomaterials.展开更多
Self-assembled Ge nanodots with areal number density up to 2.33× 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition. The dot density, a function of deposition rate and Ge c...Self-assembled Ge nanodots with areal number density up to 2.33× 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition. The dot density, a function of deposition rate and Ge coverage, is observed to be limited mainly by the transformation from two-dimensional precursors to three-dimensional islands, and to be associated with the adatom behaviors of attachment and detachment from the islands. An unusual increasing temperature dependence of nanodot density is also revealed when a high ion energy is employed in sputtering deposition, and is shown to be related to the breaking down of the superstrained wetting layer. This result is attributed to the interaction between energetic atoms and the growth surface, which mediates the island nucleation.展开更多
WC nanorods or WC nanodots are prepared via an easy,shape-controllable and large-scale preparation technique.Results reveal that each of the WC nanorods and WC nanodots has a peroxidase-like activity.Besides,the perox...WC nanorods or WC nanodots are prepared via an easy,shape-controllable and large-scale preparation technique.Results reveal that each of the WC nanorods and WC nanodots has a peroxidase-like activity.Besides,the peroxidase-like activity of WC is the first time to be demonstrated.The catalytic efficiency of WC nanorods is much higher than that of WC nanodots and chemical condition range of WC can be wider than that of WC,which indicates that WC is likely to be used as artificial mimetic peroxidase or in-situ amplified colorimetric immunoassay.展开更多
In this study, an enzymatic electrode for glucose biosensing and bioanode of glucose/air biofuel cell has been fabricated by immobilizing poly (methylene green) (polyMG) for electrocatalytic NADH oxidation and NAD+-de...In this study, an enzymatic electrode for glucose biosensing and bioanode of glucose/air biofuel cell has been fabricated by immobilizing poly (methylene green) (polyMG) for electrocatalytic NADH oxidation and NAD+-dependent glucose dehydrogenase (GDH) for oxidizing glucose on carbon nanodots (CNDs). The polyMG-CNDscomposites obtained by electro-polymerization of dye MG molecules adsorbed on CNDs display excellent electrocatalytic activity toward NADH electro-oxidation at a low overpotential of ca. -0.10 V (vs. Ag/AgCl) and the integrated enzymatic electrode shows fast response to glucose electrooxidation. Using the fabricated GDH-based enzymatic electrode, a glucose biosensor was constructed and exhibits a wide linear dynamic range from 0 to 8 mM, a low detection limit of 0.02 μM (S/N = 3), and fast response time (ca. 4 s) under the optimized conditions. The developed glucose biosensor was used to detect glucose content in human blood with satisfactory results. The fabricated GDH-based enzymatic electrode was also employed as bioanode to assembly a glucose/air biofuel cell with the laccase-CNDs/GC as the biocathode. The maximum power density delivered by the assembled glucose/air biofuel cell reaches 3.1 μW·cm-2 at a cell voltage of 0.22 V in real sample fruit juice. The present study demonstrates that potential applications of GDH-based CNDs electrode in analytical and biomedical measurements.展开更多
基金the Special Foundation for Theoretical Physics Research Program of China(Grant No.11847065)the Natural Science Foundation of Shanxi Province,China(Grant No.201901D211115).
文摘Based on ab initio density functional theory calculations,we demonstrate that two carbon-doped boron nitride analog ofα-graphyne structures,B_(3) C_(2) N_(3)) and BC_(6) N monolayers,are two-dimensional direct wide band gap semiconductors,and there are two inequivalent valleys in the vicinities of the vertices of their hexagonal Brillouin zones.Besides,B_(3)C_(2)N_(3) and BC_(6)N monolayers exhibit relatively high carrier mobilities,and their direct band gap feature is robust against the biaxial strain.More importantly,the energetically most favorable B_(3)C_(2)N_(3) and BC_(6)N bilayers also have direct wide band gaps,and valley polarization could be achieved by optical helicity.Finally,we show that BC_(6) N monolayer might have high efficiency in photo-splitting reactions of water,and a vertical van der Waals heterostructure with a type-Ⅱenergy band alignment could be designed using B_(3)C_(2)N_(3)and BC_(6)N monolayers.All the above-mentioned characteristics make B_(3)C_(2)N_(3) and BC_(6)N monolayers,bilayers,and their heterostructures recommendable candidates for applications in valleytronic devices,metal-free photocatalysts,and photovoltaic cells.
基金All authors acknowledge fund support from Guangdong Basic and Applied Basic Research Foundation(2020A1515110762)National Natural Science Foundation of China(52172084).
文摘Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by uniformly dis-persing amorphous Si nanodots(SiNDs)in carbon nanospheres(SiNDs/C)that are welded on the wall of the macroporous carbon framework(MPCF)by vertical graphene(VG),labeled as MPCF@VG@SiNDs/C.The high dispersity and amor-phous features of ultrasmall SiNDs(~0.7 nm),the flexible and directed electron/Li+transport channels of VG,and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites,rapid Li+transport path,and unique low-strain property during Li+storage.Consequently,the MPCF@VG@SiNDs/C exhibits high cycle stability(1301.4 mAh g^(-1) at 1 A g^(-1) after 1000 cycles without apparent decay)and high rate capacity(910.3 mAh g^(-1),20 A g^(-1))in half cells based on industrial electrode standards.The assembled pouch full cell delivers a high energy density(1694.0 Wh L^(-1);602.8 Wh kg^(-1))and an excellent fast-charging capability(498.5 Wh kg^(-1),charging for 16.8 min at 3 C).This study opens new possibilities for preparing advanced silicon-carbon com-posite anodes for practical applications.
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金Project supported by the National Natural Science Foundation of China(Grant No.52072132)。
文摘Adsorption characteristics of CO adsorbed on pristine 4,12,2-graphyne(4,12,2-G)and Fe-doped 4,12,2-graphyne(Fe-4,12,2-G)are studied by first-principles calculations.It is shown that CO is only physically adsorbed on pristine 4,12,2-G.Fe atoms can be doped into 4,12,2-G stably and lead to band gap opening.After doping,the interaction between Fe-4,12,2-G and CO is significantly enhanced and chemisorption occurs.The maximum adsorption energy reaches-1.606 e V.Meanwhile,the charge transfer between them increases from 0.009e to 0.196e.Moreover,the electric field can effectively regulate the adsorption ability of the Fe-4,12,2-G system,which is expected to achieve the capture and release of CO.Our study is helpful to promote applications of two-dimensional carbon materials in gas sensing and to provide new ideas for reversible CO sensor research.
基金sponsored by the National Key Research and Development Program of China(2016YFA0201700,2016YFA0201702)the Fundamental Research Funds for the Central Universities(2232019A3-06,2232019D3-02)+2 种基金the National Key Research and Development Program of China(2018YFC1105800)the National Natural Science Foundation of China(21674018,51903045)the Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials(18520750400).
文摘Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds.Despite great progress in the preparation of a variety of colored silks,fluorescent silk with enhanced mechanical properties has yet to be explored.In this study,we report on the fabrication of intrinsically super-strong fluorescent silk by feeding Bombyx mori silkworm carbon nanodots(CNDs).The CNDs were incorporated into silk fibroin,hindering the conformation transformation,confining crystallization,and inducing orientation of mesophase.The resultant silk exhibited super-strong mechanical properties with breaking strength of 521.9±82.7 MPa and breaking elongation of 19.2±4.3%,improvements of 55.1%and 53.6%,respectively,in comparison with regular silk.The CNDs-reinforced silk displayed intrinsic blue fluorescence when exposed to 405 nm laser and exhibited no cytotoxic effect on cells,suggesting that multi-functional silks would be potentially useful in bioimaging and other applications.
基金the China and Germany Postdoctoral Exchange Program for this research in Helmholtz-Zentrum Berlin für Materialien und Energiethe Postdoctoral Science Foundation of China (2017M610324)NSFC (21704040)
文摘In past decades,Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts for water splitting.With increasing demands for Ni worldwide,simplifying the fabrication process,increasing Ni recycling,and reducing waste are tangible sustainability goals.Here,binder-free,heteroatom-free,and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method.Typically,active Ni nanodot(NiND)clusters are electrodeposited on Ni foam(NF)in Ni(NO3)2 acetonitrile solution.After drying in air,NiO/NiND composites are obtained,leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode.The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials(10ηHER= 119 mV and 50ηOER=360 mV)and can promote water catalysis at 1.70 V@ 10mA cm-2.More importantly,the recovery of raw materials(NF and Ni(NO3)2)is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes.Additionally,a large-sized(S^70 cm2)NiO/NiNDs@NF catalytic electrode with high durability has also been constructed.This method provides a simple and fast technology to construct high-performance,low-cost,and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.
基金supported by the National Natural Science Foundation of China(Grant Nos.51974114,51672075 and 21908049)Natural Science Foundation of Hunan Province(Grant No.2020JJ4175)the Fundamental Research Funds for the Central Universities。
文摘Molybdenum phosphide(MoP),owing to its abundant reserve and high theoretical capacity,is regarded as a promising anode material for potassium-ion batteries.However,it still suffers from the problems of acute volume expansion and weak diffusion kinetics.This study reports a simple method to synthesize a composite of molybdenum phosphide and porous carbon(MoP@PC)through simple mixing and annealing treatment.In the MoP@PC,lots of MoP nanodots with an average diameter of about 4 nm uniformly embedded in the petal-like porous carbon.The MoP@PC shows reversible capacities of 330 mAh g^(-1) at100 mA g^(-1) after 100 cycles,and ultra-long cycling stability with a capacity of 240 mAh g^(-1) after 1000 cycles at 1 A g^(-1) and 161 mAh g^(-1) after 1000 cycles at 5 A g^(-1).The structure of MoP@PC after charging-discharging cycles is also investigated by high resolution transmission electron microscope(HRTEM)and the result shows that MoP can still maintain the nanodot morphology without any agglomeration after 1000 cycles at 5 A g^(-1).The storage mechanism of potassium ions was studied as well,which reveals that MoP and potassium ion have a conversion reaction.
基金supported by grants from the National Natural Science Foundation of China (21971129, 21961022, 21661023,21802076, and 21962013)the 111 Project (D20033)+2 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2018BS05007)the Program of Higher-level Talents of IMU (21300-5195109)the Cooperation Project of State Key Laboratory of Baiyun Obo Rare Earth Resource Researches and Comprehensive Utilization (2017Z1950)。
文摘Development of highly active and stable non-noble electrocatalysts with well-defined nanostructures is crucial for efficient hydrogen evolution reaction(HER). Herein, a novel three-dimensional(3D) selfsupported electrode consists of vanadium nitride(VN) nanodots and Co nanoparticles co-embedded and highly active single Co atoms anchored in N-doped carbon nanotubes supported on carbon cloth(VN-Co@CoSAs-NCNTs/CC) is fabricated via a one-step in situ nanoconfined pyrolysis strategy, which shows remarkable enhanced HER electrocatalytic activity in acidic medium. During pyrolysis, the formed VN nanodots induce the generation of atomic Co Nxsites in NCNTs, contributing to superior electrocatalytic activity. Experimental and density functional theory(DFT) calculation results reveal that the electrode has multiple accessible active sites, fast reaction kinetics, low charge/mass transfer resistances,high conductivity, as well as downshifted d-band center with a thermodynamically favorable hydrogen adsorption free energy(△G_(H·)), all of which greatly boost the HER performance. As a result, the VNCo@CoSAs-NCNTs/CC electrode displays superb catalytic performance toward HER with a low overpotential of 29 mV at 10 mA cm^(-2) in acidic medium, which could maintain for at least 60 h of stable performance. This work opens a facile avenue to explore low-cost, high performance, but inexpensive metals/nitrogen-doped carbon composite electrocatalysts for HER.
基金financially supported by the National Natural Science Foundation of China(21703039)。
文摘Artificial photosynthesis has gained increasing interest as a promising solution to the worldwide energy and environmental issues. A crucial requirement for realizing a sustainable system for artificial photosynthesis is to explore low cost, highly-efficient and stable photoactive materials. Carbon nanodots(CNDs) have attracted considerable attention owing to their low cost, tunable chemistry and unique light-harvesting capability. Previous review articles have highlighted the photocatalytic and photoelectrocatalytic applications of CNDs and CNDs-based composite photocatalysts. However, the control of the separation and transfer processes of photogenerated electron/hole pairs in CNDs has not been reviewed.This review summarizes the recent progress in the design of CNDs as new light-harvesting materials and highlights their applications in photocatalytic hydrogen production, CO2 photoreduction and environmental remediation. Strategies that have been employed to modulate the separation and transfer kinetics of photogenerated charge carriers in CNDs are discussed in detail. The challenges and new directions in this emerging area of research are also proposed.
文摘Shape-induced phase transition of vortex domain structures (VDSs) in BaTiO3 (BT) nanodots under open circuit boundary condition have been investigated using an effective Hamiltonian method. Our calculation indicates the tetragonal VDS missing in cubic BT nanodots can be induced by varying the shape of a nanodot from cube to platelet. Interestingly, a novel VDS is found in BT nanoplatelets in our simulations. Further investigation shows that it is a result of compromise between the ground state and the symmetry of the shape of the nanodot. Furthermore, based on the novel VDS, routes of controlling VDSs governed by homogeneous electric field and uniform stress are discussed. In particular, our results show the possibility of designing multi-states devices based on a single VDS. ~ 2017 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.
基金the Japan Society for the Promotion of Science(JSPS)through a Grant-in-Aid for Scientific Research(B)(No.16H038850)Amada Foundation for Metal Work Technology(AF-2018212).
文摘Laser-induced forward transfer(LIFT)is a direct-writing technique capable of depositing a single dot smaller than the laser wavelength at small shot energy through the laser-induced dot transfer(LIDT)technique.To deposit a single nanodot in a single shot of laser irradiation,a liquid nanodrop is transferred from donor to receiver and finally solidified via a solid–liquid–solid(SLS)process.In conventional LIDT experiments,multi-shots with step scanning have been used to form array structures.However,interference laser processing can achieve an arrayed process and generate a periodic structure in a single shot.In this study,a femtosecond laser interference pattern was first applied to LIDT,and an array of nanodots was successfully deposited in a single shot,producing the following unit structures:a single dot,adjoining dots,and stacking dots.The diameter of the smallest nanodot was 355 nm,and the narrowest gap between two adjoining nanodots was 17.2 nm.The LIDT technique produces high-purity,catalyst-free that do not require post-cleaning or alignment processes.Given these significant advantages,LIDT can expand the usability of nanodots in a wide range of fields.
基金Project supported by the National Natural Science Foundation of China(Grant No.51002063)the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City,China(Grant No.12ZX68)
文摘ZrO_2 nanodots are successfully prepared on LaAlO_3(LAO)(100) substrates by photo-assisted metal-organic chemical vapor deposition(MOCVD). It is indicated that the sizes and densities of ZrO_2 nanodots are controllable by modulating the growth temperature, oxygen partial pressure, and growth time. Meanwhile, the microwires are observed on the surfaces of substrates. It is found that there is an obvious competitive relationship between the nanodots and the microwires. In a growth temperature range from 500℃ to 660℃, the microwires turn longest and widest at 600℃, but in contrast, the nanodots grow into the smallest diameter at 600℃. This phenomenon could be illustrated by the energy barrier, decomposition rate of Zr(tmhd)_4, and mobility of atoms. In addition, growth time or oxygen partial pressure also affects the competitive relationship between the nanodots and the microwires. With increasing oxygen partial pressure from 451 Pa to 75_2 Pa,the microwires gradually grow larger while the nanodots become smaller. To further achieve the controllable growth, the coarsening effect of ZrO_2 is modified by varying the growth time, and the experimental results show that the coarsening effect of microwires is higher than that of nanodots by increasing the growth time to quickly minimize ZrO_2 energy density.
文摘Large scale tungsten nanowires and tungsten nanodots are prepared in a controllable way. The preparation is based on mechanisms of chemical vapor transportation and phase transformation during the reduction of ammonium metatungstate (AMT) in H2. The AMT is first encapsulated into the hollow core of nanostructured carbon with hollow macroporous core/mesoporous shell (NC-HMC/MS) and forms nanorods, which are the precursors of both tungsten nanowires and tungsten nanodots. Just by controlling H2 flow rate and heating rate in the reduction process, the AMT nanorods could turn into nanowires (under low rate condition) or nanodots (under high rate condition). Besides, via heat treatment at 1200 ℃, the as-obtained nano-sized tungsten could convert into W2C nanorods or WC nanodots respectively. Furthermore, the diameter of the as-obtained tungsten or tungsten carbide is confined within 50 nm by the NC-HMC/MS, and no agglomeration appears in the obtained nanomaterials.
基金Project supported by the Joint Fund of National Natural Science Foundation of China and Yunnan Province, China (Grant No. U1037604)the Applied Basic Research Foundations of Yunnan Province, China (Grant No. 2009CD003)the Scientific Research Foundation of Yunnan University, China (Grant No. 2009E28Q)
文摘Self-assembled Ge nanodots with areal number density up to 2.33× 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition. The dot density, a function of deposition rate and Ge coverage, is observed to be limited mainly by the transformation from two-dimensional precursors to three-dimensional islands, and to be associated with the adatom behaviors of attachment and detachment from the islands. An unusual increasing temperature dependence of nanodot density is also revealed when a high ion energy is employed in sputtering deposition, and is shown to be related to the breaking down of the superstrained wetting layer. This result is attributed to the interaction between energetic atoms and the growth surface, which mediates the island nucleation.
文摘WC nanorods or WC nanodots are prepared via an easy,shape-controllable and large-scale preparation technique.Results reveal that each of the WC nanorods and WC nanodots has a peroxidase-like activity.Besides,the peroxidase-like activity of WC is the first time to be demonstrated.The catalytic efficiency of WC nanorods is much higher than that of WC nanodots and chemical condition range of WC can be wider than that of WC,which indicates that WC is likely to be used as artificial mimetic peroxidase or in-situ amplified colorimetric immunoassay.
文摘In this study, an enzymatic electrode for glucose biosensing and bioanode of glucose/air biofuel cell has been fabricated by immobilizing poly (methylene green) (polyMG) for electrocatalytic NADH oxidation and NAD+-dependent glucose dehydrogenase (GDH) for oxidizing glucose on carbon nanodots (CNDs). The polyMG-CNDscomposites obtained by electro-polymerization of dye MG molecules adsorbed on CNDs display excellent electrocatalytic activity toward NADH electro-oxidation at a low overpotential of ca. -0.10 V (vs. Ag/AgCl) and the integrated enzymatic electrode shows fast response to glucose electrooxidation. Using the fabricated GDH-based enzymatic electrode, a glucose biosensor was constructed and exhibits a wide linear dynamic range from 0 to 8 mM, a low detection limit of 0.02 μM (S/N = 3), and fast response time (ca. 4 s) under the optimized conditions. The developed glucose biosensor was used to detect glucose content in human blood with satisfactory results. The fabricated GDH-based enzymatic electrode was also employed as bioanode to assembly a glucose/air biofuel cell with the laccase-CNDs/GC as the biocathode. The maximum power density delivered by the assembled glucose/air biofuel cell reaches 3.1 μW·cm-2 at a cell voltage of 0.22 V in real sample fruit juice. The present study demonstrates that potential applications of GDH-based CNDs electrode in analytical and biomedical measurements.