TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocataly...TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.展开更多
A fast and simple method for determination of α, β, γ-hexachlorocyclohexanes (HCHs) in water using activated carbon fiber-solid phase microextraction(ACF-SPME) were studied. Results showed the performance of adsorp...A fast and simple method for determination of α, β, γ-hexachlorocyclohexanes (HCHs) in water using activated carbon fiber-solid phase microextraction(ACF-SPME) were studied. Results showed the performance of adsorption and desorption of three HCHs on ACF were excellent. A wide linear range from 10 to 100 μg/L and detection limits of the ng/L level were obtained using ACF-SPME with GC-MS in selected ion monitoring(SIM) acquisition mode. The proposed method was also successfully applied for determination of three HCHs in tap water. Compared to commercial fibers, ACF showed some advantages such as better resistance to solvents, higher thermal stability, longer lifetime and lower cost. The data demonstrated that GC-MS with ACF-SPME is well suitable for the analysis of HCHs in water.展开更多
Heterogeneous photocatalytic degradation of γ-HCH on soil surfaces was carried out to evaluate the photocatalytic effectiveness of α-Fe 2O 3 and TiO 2 toward degrading γ-HCH on soil surfaces. After being spiked ...Heterogeneous photocatalytic degradation of γ-HCH on soil surfaces was carried out to evaluate the photocatalytic effectiveness of α-Fe 2O 3 and TiO 2 toward degrading γ-HCH on soil surfaces. After being spiked with γ-HCH, soil samples were loaded with α-Fe 2O 3 or TiO 2 and exposed to UV-light irradiation. Different catalyst loads, 0%, 2%, 5%, 7%, and 10% (wt.)α-Fe 2O 3; 0%, 0.5%, 1%, 2:(wt.)TiO 2, were tested for up to 7 d irradiation. The effects of soil thickness, acidity, and humic substances were also investigated. The obtained results indicated that the γ-HCH photodegradation follows the pseudo-first-order kinetics. The addition of α-Fe 2O 3 or TiO 2 accelerates the photodegradation of γ-HCH, while the photodegradation rate decreases when the content of α-Fe 2O 3 exceeds 7%(wt.). The degradation rate increases with the soil pH value. Humic substances inhibit the photocatalytic degradation of γ-HCH. Pentachlorocyclohexene, tetrachlorocyclohexene, and trichlorobenzene are detected as photodegradation intermediates, which are gradually degraded with the photodegradation evolution.展开更多
The historical annual loading to,removal from,and cumulative burden in the Arctic Ocean for β-hexachlorocyclohexane(β-HCH),an isomer comprising 5e12%of technical HCH,is investigated using a mass balance box model fr...The historical annual loading to,removal from,and cumulative burden in the Arctic Ocean for β-hexachlorocyclohexane(β-HCH),an isomer comprising 5e12%of technical HCH,is investigated using a mass balance box model from 1945 to 2020.Over the 76 years,loading occurred predominantly through ocean currents and river inflow(83%)and only a small portion via atmospheric transport(16%).β-HCH started to accumulate in the Arctic Ocean in the late 1940s,reached a peak of 810 t in 1986,and decreased to 87 t in 2020,when its concentrations in the Arctic water and air were~30 ng m^(-3)and~0.02 pg m^(-3),respectively.Even though β-HCH and α-HCH(60e70%of technical HCH)are both the isomers of HCHs with almost identical temporal and spatial emission patterns,these two chemicals have shown different major pathways entering the Arctic.Different from α-HCH with the long-range atmospheric transport(LRAT)as its major transport pathway,β-HCH reached the Arctic mainly through long-range oceanic transport(LROT).The much higher tendency of β-HCH to partition into the water,mainly due to its much lower Henry's Law Constant than α-HCH,produced an exceptionally strong pathway divergence with β-HCH favoring slow transport in water and α-HCH favoring rapid transport in air.The concentration and burden of β-HCH in the Arctic Ocean are also predicted for the year 2050 when only 4.4-5.3 t will remain in the Arctic Ocean under the influence of climate change.展开更多
基金Project supported by the National Natural Science Foundation of China(No. 29977003, 20507011)the State Ministry of Education of China(No. 00028)
文摘TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.
文摘A fast and simple method for determination of α, β, γ-hexachlorocyclohexanes (HCHs) in water using activated carbon fiber-solid phase microextraction(ACF-SPME) were studied. Results showed the performance of adsorption and desorption of three HCHs on ACF were excellent. A wide linear range from 10 to 100 μg/L and detection limits of the ng/L level were obtained using ACF-SPME with GC-MS in selected ion monitoring(SIM) acquisition mode. The proposed method was also successfully applied for determination of three HCHs in tap water. Compared to commercial fibers, ACF showed some advantages such as better resistance to solvents, higher thermal stability, longer lifetime and lower cost. The data demonstrated that GC-MS with ACF-SPME is well suitable for the analysis of HCHs in water.
文摘Heterogeneous photocatalytic degradation of γ-HCH on soil surfaces was carried out to evaluate the photocatalytic effectiveness of α-Fe 2O 3 and TiO 2 toward degrading γ-HCH on soil surfaces. After being spiked with γ-HCH, soil samples were loaded with α-Fe 2O 3 or TiO 2 and exposed to UV-light irradiation. Different catalyst loads, 0%, 2%, 5%, 7%, and 10% (wt.)α-Fe 2O 3; 0%, 0.5%, 1%, 2:(wt.)TiO 2, were tested for up to 7 d irradiation. The effects of soil thickness, acidity, and humic substances were also investigated. The obtained results indicated that the γ-HCH photodegradation follows the pseudo-first-order kinetics. The addition of α-Fe 2O 3 or TiO 2 accelerates the photodegradation of γ-HCH, while the photodegradation rate decreases when the content of α-Fe 2O 3 exceeds 7%(wt.). The degradation rate increases with the soil pH value. Humic substances inhibit the photocatalytic degradation of γ-HCH. Pentachlorocyclohexene, tetrachlorocyclohexene, and trichlorobenzene are detected as photodegradation intermediates, which are gradually degraded with the photodegradation evolution.
基金supported by the National Natural Science Foundation of China(No.42077341)Natural Science Foundation of Heilongjiang Province of China(No.LH2021E096)+3 种基金State Key Laboratory of UrbanWater Resource and Environment(Harbin Institute of Technology)(No.2022TS05)the Polar Academy,Harbin Institute of Technology(No.PA-HIT-201901)the support from Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem(HPKLPEE),Harbin Institute of Technologyfunding from Canada's Northern Contaminants Program(Crown-Indigenous Relations and Northern Affairs Canada).
文摘The historical annual loading to,removal from,and cumulative burden in the Arctic Ocean for β-hexachlorocyclohexane(β-HCH),an isomer comprising 5e12%of technical HCH,is investigated using a mass balance box model from 1945 to 2020.Over the 76 years,loading occurred predominantly through ocean currents and river inflow(83%)and only a small portion via atmospheric transport(16%).β-HCH started to accumulate in the Arctic Ocean in the late 1940s,reached a peak of 810 t in 1986,and decreased to 87 t in 2020,when its concentrations in the Arctic water and air were~30 ng m^(-3)and~0.02 pg m^(-3),respectively.Even though β-HCH and α-HCH(60e70%of technical HCH)are both the isomers of HCHs with almost identical temporal and spatial emission patterns,these two chemicals have shown different major pathways entering the Arctic.Different from α-HCH with the long-range atmospheric transport(LRAT)as its major transport pathway,β-HCH reached the Arctic mainly through long-range oceanic transport(LROT).The much higher tendency of β-HCH to partition into the water,mainly due to its much lower Henry's Law Constant than α-HCH,produced an exceptionally strong pathway divergence with β-HCH favoring slow transport in water and α-HCH favoring rapid transport in air.The concentration and burden of β-HCH in the Arctic Ocean are also predicted for the year 2050 when only 4.4-5.3 t will remain in the Arctic Ocean under the influence of climate change.