Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogenactivated protein kinase(MAPK) pathway inhibitor SB202190 has a potential ability to ...Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogenactivated protein kinase(MAPK) pathway inhibitor SB202190 has a potential ability to suppress ferroptosis, and its downstream targets, such as p53, have been shown to be associated with ferroptosis. However, whether ferroptosis also occurs in retinal ganglion cells in response to glutamate excitotoxicity and whether inhibition of ferroptosis reduces the loss of retinal ganglion cells induced by glutamate excitotoxicity remain unclear. This study investigated ferroptosis in a glutamate-induced glaucoma rat model and explored the effects and molecular mechanisms of SB202190 on retinal ganglion cells. A glutamate-induced excitotoxicity model in R28 cells and an N-methyl-D-aspartate-induced glaucoma model in rats were used. In vitro experiments showed that glutamate induced the accumulation of iron and lipid peroxide and morphological changes of mitochondria in R28 cells, and SB202190 inhibited these changes. Glutamate induced the levels of p-p38 MAPK/p38 MAPK and SAT1 and decreased the expression levels of ferritin light chain, SLC7A11, and GPX4. SB202190 inhibited the expression of iron death-related proteins induced by glutamate. In vivo experiments showed that SB202190 attenuated N-methyl-D-aspartate-induced damage to rat retinal ganglion cells and improved visual function. These results suggest that SB202190 can inhibit ferroptosis and protect retinal ganglion cells by regulating ferritin light chain, SAT1, and SLC7A11/Gpx4 pathways and may represent a potential retina protectant.展开更多
Amino acids are very important compounds for the body and are involved in important functions that keep us healthy. Amino acids are essential components such as valine, proline, glutamine and glutamic acid. They can b...Amino acids are very important compounds for the body and are involved in important functions that keep us healthy. Amino acids are essential components such as valine, proline, glutamine and glutamic acid. They can be synthesized either naturally or artificially. To examine the metabolism and regulate the synthesis process, compounds labeled with nitrogen or carbon isotopes need to be used. These isotopic compounds allow for more extensive research and enable studies that would otherwise be impossible. However, their use is dependent on the availability of simple, efficient methods for isotopic analysis. Currently, the determination of the atomic fraction of carbon and nitrogen isotopes is only possible through their conversion into molecular nitrogen or carbon monoxide or carbon dioxide. This leads to the loss of information about isotopic enrichment in specific centers of the molecule. This article explores a new direct approach to determining the atomic fraction of carbon and nitrogen isotopes in the isotope-modified or identical centers of these compounds. This method eliminates the transfer process and dilution due to nitrogen and carbon impurities. It is now possible to simultaneously determine the atomic fraction of nitrogen and carbon isotopes in the research substance. This method can be applied to amino acids, making it an effective tool for proposing new research methods. Several articles [1] [2] [3] have proposed similar methods for organic compounds and amino acids.展开更多
The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arth...The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arthritis,and managing inflammatory cytokine storms.Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma,the exact mechanism by which it enhances functional recovery after spinal cord injury,particularly its effect on astrocytes,remains unclear.To address this gap,we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury.Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury,restored EAAT2 expression,reduced glutamate levels,and alleviated excitatory toxicity.Furthermore,ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factor-α.Additionally,in glutamate-induced excitotoxicity astrocytes,ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3,thereby reducing glutamate-induced neurotoxicity,calcium influx,oxidative stress,and cell apoptosis,and increasing the complexity of dendritic branching.Collectively,these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes,reduces neurotoxicity,and effectively alleviates inflammatory and immune responses after spinal cord injury,thereby promoting functional recovery after spinal cord injury.展开更多
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta...Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.展开更多
Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as...Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as prepared Mg-Fe-LDH and calcined Mg-Fe-CLDH were used for removal of glutamic acid (Glu) from aqueous solution, respectively. Batch studies were carried out to address various experimental parameters such as contact time, pH, initial glutamic acid (Glu) concentration, co-existing anions and temperature. Glu was removed effectively (99.9%) under the optimized experimental conditions with Mg-Fe-CLDH. The adsorption kinetics follows the Ho’s pseudo second-order model. Isotherms for adsorption with Mg-Fe-CLDH at different solution temperatures were well described using the Langmuir model with a good correlation coefficient. The intraparticle diffusion model fitted the data well, which suggests that the intraparticle diffusion is not only the rate-limiting step.展开更多
[Objective] This study aimed to investigate the physical and chemical char- acteristic of Corynebacterium glutamicum in fermentation process of the glucose of wheat starch. [Method] The purity of glutamic acid in ferm...[Objective] This study aimed to investigate the physical and chemical char- acteristic of Corynebacterium glutamicum in fermentation process of the glucose of wheat starch. [Method] The purity of glutamic acid in fermentation period, optical density and cell viability of bacteria were detected as indicators for regression com- parison and analysis. [Result] The relative error d=-3.316 6% within the experimental range of Warburg trace breathing apparatus and double function analyzer. The linear relationship was s1=(1-d)s2. During the fermentation process of the glucose of wheat starch, the average cell activity was 6.24 μA and the maximum cell activity was 6.61 μA. [Conclusion] Compared with optical density, cell viability can more accurate- ly reflect the physical and chemical properties of Corynebacterium glutamicum in fermentation process of the glucose of wheat starch. There was certain correlation between cell membrane phospholipids and cell viability.展开更多
Based on the hypothesis that upstream factor inhibition results in better treatment effects than downstream factor inhibition,the present study interfered with glutamic acid(Glu)-released upstream factors,such as Gl...Based on the hypothesis that upstream factor inhibition results in better treatment effects than downstream factor inhibition,the present study interfered with glutamic acid(Glu)-released upstream factors,such as Glu transporter function and Na+-K+-adenosine triphosphatases(ATPase)activity relativly.Rats with spinal cord ischemia/reperfusion injury received intraperitoneal injections of tanshinone Ila and Glu uptake and Na+-K+-ATPase activity were increased.Results showed that tanshinone Ila influenced Glu-released upstream factors following spinal ischemia/reperfusion injury and protected against spinal ischemia/reperfusion injury.展开更多
A comparative research has been developed for acidity and stability constants of M(Glu)1, M(Asp)2 and M(Ttr)3 complexes, which have been determined by potentiometric pH titration. Depending on metal ion-binding proper...A comparative research has been developed for acidity and stability constants of M(Glu)1, M(Asp)2 and M(Ttr)3 complexes, which have been determined by potentiometric pH titration. Depending on metal ion-binding properties, vital differences in building complex were observed. The present study indicates that in M(Ttr) com-plexes, metal ions are arranged to the carboxyl groups, but in M(Glu) and M(Asp), some metal ions are able to build chelate over amine groups. The results mentioned-above demonstrate that for some M(Glu) and M(Asp) complexes, the stability constants are also largely determined by the affinity of metal ions for amine group. This leads to a kind of selectivity of metal ions, and transfers them through building complexes accompanied with glutamate and aspartate. For heavy metal ions, this building complex helps the absorption and filtration of the blood plasma, and consequently, the excursion of heavy metal ions takes place. This is an important method in micro-dialysis. In this study the different as-pects of stabilization of metal ion complexes regarding to Irving-Williams sequence have been investigated.展开更多
We have previously reported the high levels of glutamic acid decarboxylase 65 autoantibodies(GAD65A)in patients with type 1 diabetes and autoimmune thyroid disease.Here we describe a 32-year-old Japanese female with a...We have previously reported the high levels of glutamic acid decarboxylase 65 autoantibodies(GAD65A)in patients with type 1 diabetes and autoimmune thyroid disease.Here we describe a 32-year-old Japanese female with a thirteen-year history of type 1 diabetes whose levels of GAD65A were elevated just after the emergence of anti-thyroid autoimmunity.At 19 years of age,she developed diabetic ketoacidosis and was diagnosed with type 1 diabetes.She had GAD65A,insulinoma-associated antigen-2 autoantibodies(IA-2A),and zinc transporter-8 autoantibodies(ZnT8A),but was negative for antibodies to thyroid peroxidase(TPOAb)and thyroglobulin(TGAb)at disease onset.ZnT8A and IA-2A turned negative 2-3 years after the onset,whereas GAD65A were persistently positive at lower level(approximately 40 U/mL).However,just after the emergence of TGAb at disease duration of 12.5 years,GAD65A levels were reelevated up to5717 U/mL in the absence of ZnT8A and IA-2A.Her thyroid function was normal and TPOAb were consistently negative.She has a HLA-DRB1*03:01/*04:01-DQB1*02:01/*03:02 genotype.Persistent positivity for GAD65A might be associated with increased risk to develop anti-thyroid autoimmunity.展开更多
Excitatory amino acid toxicity and free radical damage play important roles in amyotrophic lateral sclerosis. Granulocyte colony-stimulating factor (G-CSF) protects nerve cells exposed to high-concentrations of glut...Excitatory amino acid toxicity and free radical damage play important roles in amyotrophic lateral sclerosis. Granulocyte colony-stimulating factor (G-CSF) protects nerve cells exposed to high-concentrations of glutamic acid, suggesting positive effects in the treatment of amyotrophic lateral sclerosis. The present study induced in vitro motor neuron injury using glutamic acid excitotoxicity, and the biochemical effects of G-CSF on glutamic acid concentration were determined. In addition, the effects of G-CSF on superoxide dismutase, glutathione peroxidase activity in motor neurons, and malondialdehyde and nitric oxide contents were analyzed. Immunohistochemistry was performed to measure neuronal survival. Results revealed that G-CSF significantly suppressed free radical activity, inhibited excitotoxicity, and reduced apoptosis and loss of motor neurons in the anterior horn of the spinal cord.展开更多
A rapid method to determine glutamic acid (Glu) in cerebrospinal fluid (CSF) by capillaryelectrophoresis with high frequency conductivity detection (contactless conductivity detection) wasdescribed. The CSF sample was...A rapid method to determine glutamic acid (Glu) in cerebrospinal fluid (CSF) by capillaryelectrophoresis with high frequency conductivity detection (contactless conductivity detection) wasdescribed. The CSF sample was pretreated with silver cation resin to remove high concentration ofCl- ions in CSF. The separation was achieved in the buffer solution of 10 mmol/L Tris and 8mmol/L boric acid at the separation voltage of 20.0 kV. Glu showed linear response in the range of5.0×10-6 to 6.0×10-3 mol/L, the limit of detection was 1.0×10-6 mol/L. The method was used foranalysis Glu in CSF satisfactorily with a recovery of 97.8-98.8%.展开更多
Background: The effect of repeated blood donation on some biochemical values of healthy adult male blood donors in Calabar, Nigeria was studied. Methods: One hundred and fifty three (153) healthy repeat blood donors a...Background: The effect of repeated blood donation on some biochemical values of healthy adult male blood donors in Calabar, Nigeria was studied. Methods: One hundred and fifty three (153) healthy repeat blood donors and 90 first time blood donors constituted the study population. Samples were analyzed using colorimetric procedures. Results: The BMI values of 24.4 ± 2.4 kg/ m2 in the first time donors was significantly higher than the 21.7 ± 1.7 kg/m2 obtained in repeat donors (P 2 = 0.7934, P Conclusion: A reduction in the values of some lipid profiles and high GGT activity is associated with repeated blood donations in this study population. Repeated blood donation may play a significant role in reducing the incidence of heart disease.展开更多
Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalitie...Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation.However,further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses.The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity.In this study,Yorkshire neonatal pigs(male,age 3 days,weight 1.0–1.5 kg,n=48)were randomly divided into control(sham surgery group)and five hypoxic ischemia subgroups,according to different recovery time,which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor(N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester).Once the model was established,immunohistochemistry,immunofluorescence staining,and western blot analyses of Notch pathway-related proteins,synaptophysin,and glutamate transporter were performed.Moreover,synapse microstructure was observed by transmission electron microscopy.At the early stage(6–12 hours after hypoxic ischemia)of hypoxic ischemic injury,expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated,the number of synaptic vesicles was reduced,and synaptic swelling was observed;at 12–24 hours after hypoxic ischemia,the Notch pathway was activated,excitatory amino acid transporter-2 and synaptophysin expression was increased,and the number of synaptic vesicles was slightly increased.Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor.This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin.展开更多
Purpose:To observe the pathological changes in rabbit retinas and the measure of glutamic acid levels in the vitreous body after suffering from high-speed bullet injuries.Methods:Rabbits eyeball contusion models were ...Purpose:To observe the pathological changes in rabbit retinas and the measure of glutamic acid levels in the vitreous body after suffering from high-speed bullet injuries.Methods:Rabbits eyeball contusion models were established with high-speed bullets,i.e,the rabbits eyes were shot with a fixed air rifle at a speed of 90 m/s.(using plastic bullets,weighing 0.201 g,on average).Retinal tissues treated with HE staining and were prepared for light microscopy examination and glutamate levels were tested at different time points after the injury.Results:Edema,exudation,hemorrhage,and rupture were evident in rabbit retinas following bullet injuries.Meanwhile,glutamate levels gradually increased as time proceeded.Conclusion:Visual impairment is related with retinal damages after high-speed bullet injuries.Increased glutamate concentration serves as a potential factor for aggravating retinal injuries.展开更多
In vitro biomineralization of glutaraldehyde crosslinked chitosan/glutamic acid films were studied. IR and ESCA (electron spectroscopy for chemical analysis) determinations confirm that chitosan and glutamic acid ar...In vitro biomineralization of glutaraldehyde crosslinked chitosan/glutamic acid films were studied. IR and ESCA (electron spectroscopy for chemical analysis) determinations confirm that chitosan and glutamic acid are successfully crosslinked by glutaraldehyde to form chitosan-glutamic acid surfaces. Composite films were soaked in saturated Ca(OH)2 solution for 8 d and then immersed in simulated body fluid (SBF) for more than 20 d. Morphological characterizations and structure of cal-cium phosphate coatings deposited on the films were studied by SEM, XRD, and EDAX (energy dispersive X-ray analysis). Initially, the treatment in SBF results in the formation of single-layer cal-cium phosphate particles over the film surface. As immersion time increases, further nucleation and growth produce the simulated calcium-carbonate hydroxyapatite coating. ICP results show Ca/P ratio of calcium phosphate coating is a function of SBF immersion time. The inducing of glutamic acid improves the biomineralization property of chitosan films.展开更多
This article describes the characteristics of natural dusts, artificial dusts and industrial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phas...This article describes the characteristics of natural dusts, artificial dusts and industrial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2, CaO and low K2O, Na2O on the chemical composition. Natural dusts are mainly irregular shaped and some particle aggregation made of small dusts on the surface of large dust. Industrial dusts are globular and blob-like, but artificial dusts are columnar and fibrous. The fine particles are mainly in the range of 0.3-5 μm,of which the dusts of less than 5 μm are over 99%.The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 ℃) in 32 hours were investigated. The changes of pH values and electric conductivity of those dusts were similar, increased slowly in first 8 hours, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, Mg was 35.4-429 mg/L, particularly Ca was maximal of 20-334 mg/L. The total amount of dissolved ions of Fe, Zn, Mn, Pb, Ba was 0.18-5.59 ppm and the Al, Si was 3.0-21.7 mg/L. Each element dissolved rapidly relatively in first 16 hours. The relative solubility order of dusts in glutamic acid are: wollastonite > serpentine > sepiolite, the cement plant industrial dusts > power plant industrial dusts, and natural dusts have similar solubility. The wollastonite and power plant industrial dusts have highest solubility, which have high content of CaO; this shows there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and cement plant industrial dusts have lowest solubility, which have high content of SiO2; this shows there are a higher corrosion-resisting ability and stronger bio-resistibility.展开更多
Simulated enantiomeric excess of glutamic acid was determined by a lab-made sixteen-channel capillary array electrophoresis with confocal fluorescent rotary scanner. The experimental results indicated that the capilla...Simulated enantiomeric excess of glutamic acid was determined by a lab-made sixteen-channel capillary array electrophoresis with confocal fluorescent rotary scanner. The experimental results indicated that the capillary array electrophoresis method can accurately determine the enanfiomefic excess of glutamic acid and can be used for high-throughput screening system for combinatorial asymmetric catalysis.展开更多
Summary: In order to explore the roles of different neurotransmitters in epileptic pathogenesis, the synaptic connections between glutamic acid (Gin) neurons and GABA neurons in normal rat hippocampus were studied by ...Summary: In order to explore the roles of different neurotransmitters in epileptic pathogenesis, the synaptic connections between glutamic acid (Gin) neurons and GABA neurons in normal rat hippocampus were studied by pre-embedding double labeling immunoelectron microscopy. The GABA immunoreaction was first demonstrated by chromogen DAB, then the Gin immunoreaction was demonstrated by molybdic acid-TAB method. After being stabilized by DAB-cobalt chloride. the sections were processed for electron microscopic embedding. Under electron microscope, there were many Gin immunoreaction-positive neurons in the pyramidal layer of hippocampal CA1 area and some GABA immunoreaction-positive neurons with pyramidal or polygonal perikarya in the pyramidal, polymorphic and radiant layer of CA1 area. There were also symmetric dendro-axonic synapses formed by GABA-positive dendrites and Glu-positive a-cons in the polymorphic layer and symmetric axo-dendritic synapses formed by GABA-positive axons and Glu-positive dendrites in the radiant layer. In addition, there were symmetric autoregulatory axo-dendritic synapses be- tween Gin-positive axons and dendrites and autoregulatory axo-axonic synapses (both symmetric and asymmetric) between GABA-positive axons. Above mentioned results, for the first time, showed that there were complex synaptic regulatory relationships between excitatory Glu neurons and inhibitory GABA neurons in the hippocampal CA1 area, thereby, providing ultrastructural evidence for different neurotransmitters participating in epileptic pathogenesis.展开更多
β-Poly(L-malic acid)(PMLA)is a water-soluble biopolymer used in food,medicine and other industries.To date,the biosynthesis pathway of PMLA has not been fully elucidated.In this study,we sequenced the transcriptom e ...β-Poly(L-malic acid)(PMLA)is a water-soluble biopolymer used in food,medicine and other industries.To date,the biosynthesis pathway of PMLA has not been fully elucidated.In this study,we sequenced the transcriptom e of strain Aureobasidium melanogenum under 20 g/L CaCO_(3) addition.The resulting sequencing reads were assembled and annotated for the differentially expressed genes(DEGs)analysis and novel transcripts identification.The result indicated that with the CaCO_(3) addition,the tricarboxylic cycle(TCA)cycle and glyoxylate pathway were up-regulated,and it also found that a non-ribosomal peptide synthetase(NRPS)like protein was highly expressed.The DEGs analysis showed a high expression level of malate dehydrogenase(MDHC)and phosphoenolpyruvate carboxykinase(PCKA)in the CaCO_(3) group,which indicated a cytosolic malate activity.We speculated that the malate should be transported to or synthesized in the cytoplasm,which was then polymerized to PMLA by the NRPS-like protein,accompanied by the up-regulated TCA cycle providing ATP for the polymerization.Depending on the analysis,we assumed that an NRPS-like protein,the TCA cycle,and the cytosolic malate together are contributing to the PMLA biosynthesis.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81974132,81770927Hunan Provincial Health Commission,No.20220702839+1 种基金the Natural Science Foundation of Hunan Province of China,No.2022JJ30076National Key R&D Program of China,No.2021YFA1101202(all to WS)。
文摘Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogenactivated protein kinase(MAPK) pathway inhibitor SB202190 has a potential ability to suppress ferroptosis, and its downstream targets, such as p53, have been shown to be associated with ferroptosis. However, whether ferroptosis also occurs in retinal ganglion cells in response to glutamate excitotoxicity and whether inhibition of ferroptosis reduces the loss of retinal ganglion cells induced by glutamate excitotoxicity remain unclear. This study investigated ferroptosis in a glutamate-induced glaucoma rat model and explored the effects and molecular mechanisms of SB202190 on retinal ganglion cells. A glutamate-induced excitotoxicity model in R28 cells and an N-methyl-D-aspartate-induced glaucoma model in rats were used. In vitro experiments showed that glutamate induced the accumulation of iron and lipid peroxide and morphological changes of mitochondria in R28 cells, and SB202190 inhibited these changes. Glutamate induced the levels of p-p38 MAPK/p38 MAPK and SAT1 and decreased the expression levels of ferritin light chain, SLC7A11, and GPX4. SB202190 inhibited the expression of iron death-related proteins induced by glutamate. In vivo experiments showed that SB202190 attenuated N-methyl-D-aspartate-induced damage to rat retinal ganglion cells and improved visual function. These results suggest that SB202190 can inhibit ferroptosis and protect retinal ganglion cells by regulating ferritin light chain, SAT1, and SLC7A11/Gpx4 pathways and may represent a potential retina protectant.
文摘Amino acids are very important compounds for the body and are involved in important functions that keep us healthy. Amino acids are essential components such as valine, proline, glutamine and glutamic acid. They can be synthesized either naturally or artificially. To examine the metabolism and regulate the synthesis process, compounds labeled with nitrogen or carbon isotopes need to be used. These isotopic compounds allow for more extensive research and enable studies that would otherwise be impossible. However, their use is dependent on the availability of simple, efficient methods for isotopic analysis. Currently, the determination of the atomic fraction of carbon and nitrogen isotopes is only possible through their conversion into molecular nitrogen or carbon monoxide or carbon dioxide. This leads to the loss of information about isotopic enrichment in specific centers of the molecule. This article explores a new direct approach to determining the atomic fraction of carbon and nitrogen isotopes in the isotope-modified or identical centers of these compounds. This method eliminates the transfer process and dilution due to nitrogen and carbon impurities. It is now possible to simultaneously determine the atomic fraction of nitrogen and carbon isotopes in the research substance. This method can be applied to amino acids, making it an effective tool for proposing new research methods. Several articles [1] [2] [3] have proposed similar methods for organic compounds and amino acids.
基金supported by the National Natural Science Foundation of China,No.82272484(to XC).
文摘The inflammatory microenvironment and neurotoxicity can hinder neuronal regeneration and functional recovery after spinal cord injury.Ruxolitinib,a JAK-STAT inhibitor,exhibits effectiveness in autoimmune diseases,arthritis,and managing inflammatory cytokine storms.Although studies have shown the neuroprotective potential of ruxolitinib in neurological trauma,the exact mechanism by which it enhances functional recovery after spinal cord injury,particularly its effect on astrocytes,remains unclear.To address this gap,we established a mouse model of T10 spinal cord contusion and found that ruxolitinib effectively improved hindlimb motor function and reduced the area of spinal cord injury.Transcriptome sequencing analysis showed that ruxolitinib alleviated inflammation and immune response after spinal cord injury,restored EAAT2 expression,reduced glutamate levels,and alleviated excitatory toxicity.Furthermore,ruxolitinib inhibited the phosphorylation of JAK2 and STAT3 in the injured spinal cord and decreased the phosphorylation level of nuclear factor kappa-B and the expression of inflammatory factors interleukin-1β,interleukin-6,and tumor necrosis factor-α.Additionally,in glutamate-induced excitotoxicity astrocytes,ruxolitinib restored EAAT2 expression and increased glutamate uptake by inhibiting the activation of STAT3,thereby reducing glutamate-induced neurotoxicity,calcium influx,oxidative stress,and cell apoptosis,and increasing the complexity of dendritic branching.Collectively,these results indicate that ruxolitinib restores glutamate homeostasis by rescuing the expression of EAAT2 in astrocytes,reduces neurotoxicity,and effectively alleviates inflammatory and immune responses after spinal cord injury,thereby promoting functional recovery after spinal cord injury.
基金supported by the Natural Science Foundation of Hunan Province,No.2021JJ30389(to JG)the Key Research and Development Program of Hunan Province of China,Nos.2022SK2042(to LL)and 2020SK2122(to ET)。
文摘Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
基金Project(21176263)supported by the National Natural Science Foundation of China
文摘Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as prepared Mg-Fe-LDH and calcined Mg-Fe-CLDH were used for removal of glutamic acid (Glu) from aqueous solution, respectively. Batch studies were carried out to address various experimental parameters such as contact time, pH, initial glutamic acid (Glu) concentration, co-existing anions and temperature. Glu was removed effectively (99.9%) under the optimized experimental conditions with Mg-Fe-CLDH. The adsorption kinetics follows the Ho’s pseudo second-order model. Isotherms for adsorption with Mg-Fe-CLDH at different solution temperatures were well described using the Langmuir model with a good correlation coefficient. The intraparticle diffusion model fitted the data well, which suggests that the intraparticle diffusion is not only the rate-limiting step.
基金Supported by National High-tech 863 Project of China(No.2003AA001029)~~
文摘[Objective] This study aimed to investigate the physical and chemical char- acteristic of Corynebacterium glutamicum in fermentation process of the glucose of wheat starch. [Method] The purity of glutamic acid in fermentation period, optical density and cell viability of bacteria were detected as indicators for regression com- parison and analysis. [Result] The relative error d=-3.316 6% within the experimental range of Warburg trace breathing apparatus and double function analyzer. The linear relationship was s1=(1-d)s2. During the fermentation process of the glucose of wheat starch, the average cell activity was 6.24 μA and the maximum cell activity was 6.61 μA. [Conclusion] Compared with optical density, cell viability can more accurate- ly reflect the physical and chemical properties of Corynebacterium glutamicum in fermentation process of the glucose of wheat starch. There was certain correlation between cell membrane phospholipids and cell viability.
基金the National Natural Science Foundation of China, No.30572401, No.30973765the Natural Science Foundation of Fujian Province, No.2008J0094+1 种基金the Science and Technology Activity of Abroad Scholars, Ministry of Personnel, No. [2006]164 Scientific Research Foundation for Talents of Fujian Province, No. 1401
文摘Based on the hypothesis that upstream factor inhibition results in better treatment effects than downstream factor inhibition,the present study interfered with glutamic acid(Glu)-released upstream factors,such as Glu transporter function and Na+-K+-adenosine triphosphatases(ATPase)activity relativly.Rats with spinal cord ischemia/reperfusion injury received intraperitoneal injections of tanshinone Ila and Glu uptake and Na+-K+-ATPase activity were increased.Results showed that tanshinone Ila influenced Glu-released upstream factors following spinal ischemia/reperfusion injury and protected against spinal ischemia/reperfusion injury.
文摘A comparative research has been developed for acidity and stability constants of M(Glu)1, M(Asp)2 and M(Ttr)3 complexes, which have been determined by potentiometric pH titration. Depending on metal ion-binding properties, vital differences in building complex were observed. The present study indicates that in M(Ttr) com-plexes, metal ions are arranged to the carboxyl groups, but in M(Glu) and M(Asp), some metal ions are able to build chelate over amine groups. The results mentioned-above demonstrate that for some M(Glu) and M(Asp) complexes, the stability constants are also largely determined by the affinity of metal ions for amine group. This leads to a kind of selectivity of metal ions, and transfers them through building complexes accompanied with glutamate and aspartate. For heavy metal ions, this building complex helps the absorption and filtration of the blood plasma, and consequently, the excursion of heavy metal ions takes place. This is an important method in micro-dialysis. In this study the different as-pects of stabilization of metal ion complexes regarding to Irving-Williams sequence have been investigated.
文摘We have previously reported the high levels of glutamic acid decarboxylase 65 autoantibodies(GAD65A)in patients with type 1 diabetes and autoimmune thyroid disease.Here we describe a 32-year-old Japanese female with a thirteen-year history of type 1 diabetes whose levels of GAD65A were elevated just after the emergence of anti-thyroid autoimmunity.At 19 years of age,she developed diabetic ketoacidosis and was diagnosed with type 1 diabetes.She had GAD65A,insulinoma-associated antigen-2 autoantibodies(IA-2A),and zinc transporter-8 autoantibodies(ZnT8A),but was negative for antibodies to thyroid peroxidase(TPOAb)and thyroglobulin(TGAb)at disease onset.ZnT8A and IA-2A turned negative 2-3 years after the onset,whereas GAD65A were persistently positive at lower level(approximately 40 U/mL).However,just after the emergence of TGAb at disease duration of 12.5 years,GAD65A levels were reelevated up to5717 U/mL in the absence of ZnT8A and IA-2A.Her thyroid function was normal and TPOAb were consistently negative.She has a HLA-DRB1*03:01/*04:01-DQB1*02:01/*03:02 genotype.Persistent positivity for GAD65A might be associated with increased risk to develop anti-thyroid autoimmunity.
文摘Excitatory amino acid toxicity and free radical damage play important roles in amyotrophic lateral sclerosis. Granulocyte colony-stimulating factor (G-CSF) protects nerve cells exposed to high-concentrations of glutamic acid, suggesting positive effects in the treatment of amyotrophic lateral sclerosis. The present study induced in vitro motor neuron injury using glutamic acid excitotoxicity, and the biochemical effects of G-CSF on glutamic acid concentration were determined. In addition, the effects of G-CSF on superoxide dismutase, glutathione peroxidase activity in motor neurons, and malondialdehyde and nitric oxide contents were analyzed. Immunohistochemistry was performed to measure neuronal survival. Results revealed that G-CSF significantly suppressed free radical activity, inhibited excitotoxicity, and reduced apoptosis and loss of motor neurons in the anterior horn of the spinal cord.
基金This project was supported by the Guangdong Provincial Foundation of Natural Science(021808)
文摘A rapid method to determine glutamic acid (Glu) in cerebrospinal fluid (CSF) by capillaryelectrophoresis with high frequency conductivity detection (contactless conductivity detection) wasdescribed. The CSF sample was pretreated with silver cation resin to remove high concentration ofCl- ions in CSF. The separation was achieved in the buffer solution of 10 mmol/L Tris and 8mmol/L boric acid at the separation voltage of 20.0 kV. Glu showed linear response in the range of5.0×10-6 to 6.0×10-3 mol/L, the limit of detection was 1.0×10-6 mol/L. The method was used foranalysis Glu in CSF satisfactorily with a recovery of 97.8-98.8%.
文摘Background: The effect of repeated blood donation on some biochemical values of healthy adult male blood donors in Calabar, Nigeria was studied. Methods: One hundred and fifty three (153) healthy repeat blood donors and 90 first time blood donors constituted the study population. Samples were analyzed using colorimetric procedures. Results: The BMI values of 24.4 ± 2.4 kg/ m2 in the first time donors was significantly higher than the 21.7 ± 1.7 kg/m2 obtained in repeat donors (P 2 = 0.7934, P Conclusion: A reduction in the values of some lipid profiles and high GGT activity is associated with repeated blood donations in this study population. Repeated blood donation may play a significant role in reducing the incidence of heart disease.
基金supported by the National Natural Science Foundation of China,Nos.81871408 and 81271631(to XMW)National Science Foundation for Young Scientists of China,No.81801658(to YZ)+1 种基金Outstanding Scientific Fund of Shengjing Hospital,No.201402(to XMW)345 Talent Support Project of Shengjing Hospital,No.30B(to YZ)。
文摘Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation.However,further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses.The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity.In this study,Yorkshire neonatal pigs(male,age 3 days,weight 1.0–1.5 kg,n=48)were randomly divided into control(sham surgery group)and five hypoxic ischemia subgroups,according to different recovery time,which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor(N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester).Once the model was established,immunohistochemistry,immunofluorescence staining,and western blot analyses of Notch pathway-related proteins,synaptophysin,and glutamate transporter were performed.Moreover,synapse microstructure was observed by transmission electron microscopy.At the early stage(6–12 hours after hypoxic ischemia)of hypoxic ischemic injury,expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated,the number of synaptic vesicles was reduced,and synaptic swelling was observed;at 12–24 hours after hypoxic ischemia,the Notch pathway was activated,excitatory amino acid transporter-2 and synaptophysin expression was increased,and the number of synaptic vesicles was slightly increased.Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor.This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin.
基金Medicine and health scientific research fund supported by Nanjing Military Region (06MA118)
文摘Purpose:To observe the pathological changes in rabbit retinas and the measure of glutamic acid levels in the vitreous body after suffering from high-speed bullet injuries.Methods:Rabbits eyeball contusion models were established with high-speed bullets,i.e,the rabbits eyes were shot with a fixed air rifle at a speed of 90 m/s.(using plastic bullets,weighing 0.201 g,on average).Retinal tissues treated with HE staining and were prepared for light microscopy examination and glutamate levels were tested at different time points after the injury.Results:Edema,exudation,hemorrhage,and rupture were evident in rabbit retinas following bullet injuries.Meanwhile,glutamate levels gradually increased as time proceeded.Conclusion:Visual impairment is related with retinal damages after high-speed bullet injuries.Increased glutamate concentration serves as a potential factor for aggravating retinal injuries.
基金Funded by the Natural Science Foundation of Shanghai (No. 04ZR14087)
文摘In vitro biomineralization of glutaraldehyde crosslinked chitosan/glutamic acid films were studied. IR and ESCA (electron spectroscopy for chemical analysis) determinations confirm that chitosan and glutamic acid are successfully crosslinked by glutaraldehyde to form chitosan-glutamic acid surfaces. Composite films were soaked in saturated Ca(OH)2 solution for 8 d and then immersed in simulated body fluid (SBF) for more than 20 d. Morphological characterizations and structure of cal-cium phosphate coatings deposited on the films were studied by SEM, XRD, and EDAX (energy dispersive X-ray analysis). Initially, the treatment in SBF results in the formation of single-layer cal-cium phosphate particles over the film surface. As immersion time increases, further nucleation and growth produce the simulated calcium-carbonate hydroxyapatite coating. ICP results show Ca/P ratio of calcium phosphate coating is a function of SBF immersion time. The inducing of glutamic acid improves the biomineralization property of chitosan films.
基金Project supported by National Natural Science Fundation of China (No. 41130746).
文摘This article describes the characteristics of natural dusts, artificial dusts and industrial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2, CaO and low K2O, Na2O on the chemical composition. Natural dusts are mainly irregular shaped and some particle aggregation made of small dusts on the surface of large dust. Industrial dusts are globular and blob-like, but artificial dusts are columnar and fibrous. The fine particles are mainly in the range of 0.3-5 μm,of which the dusts of less than 5 μm are over 99%.The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 ℃) in 32 hours were investigated. The changes of pH values and electric conductivity of those dusts were similar, increased slowly in first 8 hours, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, Mg was 35.4-429 mg/L, particularly Ca was maximal of 20-334 mg/L. The total amount of dissolved ions of Fe, Zn, Mn, Pb, Ba was 0.18-5.59 ppm and the Al, Si was 3.0-21.7 mg/L. Each element dissolved rapidly relatively in first 16 hours. The relative solubility order of dusts in glutamic acid are: wollastonite > serpentine > sepiolite, the cement plant industrial dusts > power plant industrial dusts, and natural dusts have similar solubility. The wollastonite and power plant industrial dusts have highest solubility, which have high content of CaO; this shows there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and cement plant industrial dusts have lowest solubility, which have high content of SiO2; this shows there are a higher corrosion-resisting ability and stronger bio-resistibility.
文摘Simulated enantiomeric excess of glutamic acid was determined by a lab-made sixteen-channel capillary array electrophoresis with confocal fluorescent rotary scanner. The experimental results indicated that the capillary array electrophoresis method can accurately determine the enanfiomefic excess of glutamic acid and can be used for high-throughput screening system for combinatorial asymmetric catalysis.
基金This project was supported by a grant from the National Nature Scientific Foundation of China !(No. 39330210).
文摘Summary: In order to explore the roles of different neurotransmitters in epileptic pathogenesis, the synaptic connections between glutamic acid (Gin) neurons and GABA neurons in normal rat hippocampus were studied by pre-embedding double labeling immunoelectron microscopy. The GABA immunoreaction was first demonstrated by chromogen DAB, then the Gin immunoreaction was demonstrated by molybdic acid-TAB method. After being stabilized by DAB-cobalt chloride. the sections were processed for electron microscopic embedding. Under electron microscope, there were many Gin immunoreaction-positive neurons in the pyramidal layer of hippocampal CA1 area and some GABA immunoreaction-positive neurons with pyramidal or polygonal perikarya in the pyramidal, polymorphic and radiant layer of CA1 area. There were also symmetric dendro-axonic synapses formed by GABA-positive dendrites and Glu-positive a-cons in the polymorphic layer and symmetric axo-dendritic synapses formed by GABA-positive axons and Glu-positive dendrites in the radiant layer. In addition, there were symmetric autoregulatory axo-dendritic synapses be- tween Gin-positive axons and dendrites and autoregulatory axo-axonic synapses (both symmetric and asymmetric) between GABA-positive axons. Above mentioned results, for the first time, showed that there were complex synaptic regulatory relationships between excitatory Glu neurons and inhibitory GABA neurons in the hippocampal CA1 area, thereby, providing ultrastructural evidence for different neurotransmitters participating in epileptic pathogenesis.
基金the financial support of the Tianjin Municipal Science and Technology Commission(17PTGCCX00190,17PTSYJC00080,17YFCZZC00310,and 16YFXTSF00460)the Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control(ZXKF20180301).
文摘β-Poly(L-malic acid)(PMLA)is a water-soluble biopolymer used in food,medicine and other industries.To date,the biosynthesis pathway of PMLA has not been fully elucidated.In this study,we sequenced the transcriptom e of strain Aureobasidium melanogenum under 20 g/L CaCO_(3) addition.The resulting sequencing reads were assembled and annotated for the differentially expressed genes(DEGs)analysis and novel transcripts identification.The result indicated that with the CaCO_(3) addition,the tricarboxylic cycle(TCA)cycle and glyoxylate pathway were up-regulated,and it also found that a non-ribosomal peptide synthetase(NRPS)like protein was highly expressed.The DEGs analysis showed a high expression level of malate dehydrogenase(MDHC)and phosphoenolpyruvate carboxykinase(PCKA)in the CaCO_(3) group,which indicated a cytosolic malate activity.We speculated that the malate should be transported to or synthesized in the cytoplasm,which was then polymerized to PMLA by the NRPS-like protein,accompanied by the up-regulated TCA cycle providing ATP for the polymerization.Depending on the analysis,we assumed that an NRPS-like protein,the TCA cycle,and the cytosolic malate together are contributing to the PMLA biosynthesis.