Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i...Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.展开更多
Cancer is a major cause of morbidity and mortality worldwide,and the incidence is increasing,highlighting the need for effective strategies to treat this disease.Exercise has emerged as fundamental therapeutic medicin...Cancer is a major cause of morbidity and mortality worldwide,and the incidence is increasing,highlighting the need for effective strategies to treat this disease.Exercise has emerged as fundamental therapeutic medicine in the management of cancer,associated with a lower risk of recur-rence and increased survival.Several avenues of research demonstrate reduction in growth,proliferation,and increased apoptosis of cancer cells,including breast,prostate,colorectal,and lung cancer,when cultured by serum collected after exercise in vitro(i.e.,the cultivation of cancer cell lines in an experimental setting,which simplifies the biological system and provides mechanistic insight into cell responses).The underlying mechanisms of exercise-induced cancer suppressive effects may be attributed to the alteration in circulating factors,such as skeletal muscle-induced cytokines(i.e.,myokines)and hormones.However,exercise-induced tumor suppressive effects and detailed information about training interventions are not well investigated,constraining more precise application of exercise medicine within clinical oncology.To date,it remains unclear what role different training modes(i.e.,resistance and aerobic training)as well as volume and intensity have on exercise-condi-tioned serum and its effects on cancer cells.Nevertheless,the available evidence is that a single bout of aerobic training at moderate to vigorous intensity has cancer suppressive effects,while for chronic training interventions,exercise volume appears to be an influential candidate driving cancer inhibitory effects regardless of training mode.Insights for future research investigating training modes,volume and intensity are provided to further our understanding of the effects of exercise-conditioned serum on cancer cells.展开更多
1.Light intensity physical activity(PA)benefits health PA guidelines worldwide recommend that adults accumulate 150 min of moderate intensity or 75 min of vigorous intensity PA(moderate-to-vigorous PA(MVPA))weekly to ...1.Light intensity physical activity(PA)benefits health PA guidelines worldwide recommend that adults accumulate 150 min of moderate intensity or 75 min of vigorous intensity PA(moderate-to-vigorous PA(MVPA))weekly to achieve health benefits.1-3 Absent from these guidelines are recommendations for light intensity PA(LPA,e.g.,walking at a leisurely pace of 3 km/h or less,equivalent to 1.5-2.9 metabolic equivalents).展开更多
Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a ti...Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts.展开更多
A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample ...A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.展开更多
Deciphering the composite information within a light field through a single photodetector,without optical and mechanical structures,is challenging.The difficulty lies in extracting multi-dimensional optical informatio...Deciphering the composite information within a light field through a single photodetector,without optical and mechanical structures,is challenging.The difficulty lies in extracting multi-dimensional optical information from a single dimension of photocurrent.Emerging photodetectors based on information reconstruction have potential,yet they only extract information contained in the photoresponse current amplitude(responsivity matrix),neglecting the hidden information in response edges driven by carrier dynamics.Herein,by adjusting the thickness of the absorption layer and the interface electric field strength in the perovskite photodiode,we extend the transport and relaxation time of carriers excited by photons of different wavelengths,maximizing the spectrum richness of the edge waveform in the light-dark transition process.For the first time,without the need for extra optical and electrical components,the reconstruction of two-dimensional information of light intensity and wavelength has been achieved.With the integration of machine learning algorithms into waveform data analysis,a wide operation spectrum range of 350–750 nm is available with a 100%accuracy rate.The restoration error has been lowered to less than 0.1%for light intensity.This work offers valuable insights for advancing perovskite applications in areas such as wavelength identification and spectrum imaging.展开更多
Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns...Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns of accumulation of PA are differentially associated with hypertension and obesity in Australian women over 21 years.Specifically,we investigated whether,for the same weekly volume of PA,the number of sessions(frequency)and vigorousness of PA(intensity)were associated with a reduction in the occurrence of hypertension and obesity in women.Methods:Data from the 1973-1978 and 1946-1951 cohorts of the Australian Longitudinal Study on Women's Health were analyzed(n=20,588;12%-16%with a Bachelor's or higher degree).Self-reported PA,hypertension,height,and weight were collected using mail surveys every 3 years from 1998/2000 to 2019/2021.Generalized Estimating Equation models with a 3-year lag model were used to investigate the association of PA volume(metabolic equivalent min/week)(none;33-499;500-999;≥1000,weekly frequency(none;1-2 times;3-4times;5-7 times;≥8 times),and the proportion of vigorous PA to total volume of PA(none;0%;1%-33%;34%-66%;67%-100%)with odds of hypertension and obesity from 2000 to 2021.Results:The cumulative incidence of hypertension was 6%in the 1973-1978 and 23%in the 1946-1951 cohort;27%of women in the 1973-1978;and 15%in the 1946-1951 cohort developed obesity over the period.Overall,a higher volume of PA was associated with reduced odds of hypertension and obesity.When the volume of PA was considered,the odds of hypertension did not vary according to the frequency or intensity of PA.However,increased proportion of vigorous PA to the total volume of PA was associated with a small additional reduction in the risk of obe sity.Conclusion:PA volume appears to be more important than the pattern of accumulation for the prevention of hypertension and obesity.Incorporating more sessions,particularly of vigorous-intensity PA,may provide extra benefits for the prevention of obesity.展开更多
This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by t...This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by the China Meteorological Administration(CMA).The evaluation of the reconnaissance data shows that the minimum central sea level pressure(MCP)data are relatively homogeneous,whereas the maximum sustained wind(MSW)data show both overestimations and spurious abrupt changes.Statistical comparisons suggest that both the reconnaissance MCP and MSW were well incorporated into the CMA TC best track dataset.Although no spurious abrupt changes were evident in the reconnaissance-related best track MCP data,two spurious changepoints were identified in the remainder of the best-track MCP data.Furthermore,the influence of the reconnaissance MSWs seems to extend to the best track MSWs unrelated to reconnaissance,which might reflect the optimistic confidence in making higher estimates due to the overestimated extreme wind“observations”.In addition,the overestimation of either the reconnaissance MSWs or the best track MSWs was greater during the early decades compared to later decades,which reflects the important influence of reconnaissance data on the CMA TC best track dataset.The wind-pressure relationship(WPR)used in the CMA TC best track dataset is also evaluated and is found to overestimate the MSW,which may lead to inhomogeneity within the dataset between the aircraft reconnaissance era and the satellite era.展开更多
In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L...In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L:D=12:12,14:10 and 10:14),temperature(15℃(LT),25℃(MT)and 30℃(HT))and light intensity(100,200 and 400μmol m^(−2)s^(−1),noted as LL,ML and HL,respectively)conditions.Then the maturation time,spore release number and chlorophyll fluorescence were analyzed.The results suggested that:1)The spore maturation time was accelerated by higher temperature or higher light intensity from 62 h to 36 h,and changes in day length accelerated the spore maturation to a certain extent as compared with 12:12 light/dark cycle;2)Higher light intensity significantly decreased the chlorophyll fluorescence(Fv′/Fm′,NPQ,rETRmax andα)of the mature reproductive segment under 30℃with 12:12 light/dark cycle.But when in the other photoperiods(10:14 and 14:10 conditions),the inhibitory effects of high light intensity were alleviated significantly;3)The optimum condition for the spore maturation and release was 12:12 light/dark cycle,25℃,400μmol m^(−2)s^(−1),with both shorter and longer photoperiod reducing the spore release number;4)Higher light intensity significantly increased the spore release number under 25℃,but these effects were alleviated by 30℃treatment.This study is the first attempt to elucidate the coincidence effects of photoperiod,temperature and light intensity on the reproduction of Ulva,which would help to reveal the mechanism of the rapid proliferation of green tide.展开更多
Objectives:In the sphere of occupational intensity,nursing stands recognized for its inherently demanding nature,marked by a rapid succession of tasks.Our primary aim was to assess the level of job intensity within nu...Objectives:In the sphere of occupational intensity,nursing stands recognized for its inherently demanding nature,marked by a rapid succession of tasks.Our primary aim was to assess the level of job intensity within nursing by analyzing the frequency and duration of activities performed by nurses,instances of task overlap,and the distribution of break times within a primary healthcare center.Methods:This study was conducted using a descriptive working method.Nursing activities were recorded with the observation of six nurses,each monitored for 37.5 h.We used the Maribor System for measuring Quantity in Nursing Care in Primary Health Care Settings to measure the nursing care activities about direct patient care,indirect patient care,and other unproductive aspects through direct non-participant observations.Results:About 41.5%(n=1,640)of all nursing activities involving direct contact with patients,about 38.2%(n=1,508)was indirect patient care,where a large amount worked with paper files(n=666,16.9%).In addition,about 15.0%were other nursing activities(mostly computer work),and just 5.3%(n=210)of tasks were unproductive.The observational findings indicate a pronounced level of work intensity experienced by nurses in primary health clinics.Significantly,nurses were predominantly engaged in direct patient care tasks,often managing multiple activities simultaneously.Their transitions between tasks occurred approximately every 3 min,frequently without adequate intervals for breaks.Conclusions:This study highlights the need to shift nurses’focus from a task-centric approach to one centered on patient care.The prevailing emphasis on tasks may contribute to enduring fatigue and professional dissatisfaction.Consequently,there is an urgent need to redefine the scope of a nurse’s role and implement a comprehensive computer information system as an integral part of this redefined approach.展开更多
Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advance...Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future.展开更多
Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental pro...Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental properties of an eddy.However,the seasonal spatiotemporal variation in eddy intensity has not been examined from a global ocean perspective.In this study,we unveil the seasonal spatiotemporal characteristics of eddy intensity in the global ocean by using the latest satellite-altimetry-derived eddy trajectory data set.The results suggest that the eddy intensity has a distinct seasonal variation,reaching a peak in spring while attaining a minimum in autumn in the Northern Hemisphere and the opposite in the Southern Hemisphere.The seasonal variation of eddy intensity is more intense in the tropical-subtropical transition zones within latitudinal bands between 15°and 30°in the western Pacific Ocean,the northwestern Atlantic Ocean,and the eastern Indian Ocean because baroclinic instability in these areas changes sharply.Further analysis found that the seasonal variation of baroclinic instability precedes the eddy intensity by a phase of 2–3 months due to the initial perturbations needing time to grow into mesoscale eddies.展开更多
We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation meas...We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation measurement configuration,without requiring a specific form of the incident pulse function.A rigorous solution of the nonlinear coupled wave equation is obtained in the time domain and expressed in a general analytical form.The global model fully accounts for the nonlinear interaction and propagation effects within nonlinear crystals,which are not captured by the classical local model.To assess the performance of the global model compared to the classic local model,we investigate the autocorrelation signals obtained from both models for different incident pulse waveforms and different full-widthes at half-maximum(FWHMs).When the incident pulse waveform is Lorentzian with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 399.9 fs,while the classic local model predicts an FWHM of 331.4 fs.The difference between the two models is 68.6 fs,corresponding to an error of 17.2%.Similarly,for a sech-type incident pulse with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 343.9 fs,while the local model predicts an FWHM of 308.8 fs.The difference between the two models is 35.1 fs,with an error of 10.2%.We further examine the behavior of the models for Lorentzian pulses with FWHMs of 100 fs,200 fs and 500 fs.The differences between the global and local models are 17.1 fs,68.6 fs and 86.0 fs,respectively,with errors approximately around 17%.These comparative analyses clearly demonstrate the superior accuracy of the global model in intensity autocorrelation modeling.展开更多
The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial ex...The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.展开更多
The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of th...The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of the measured system due to temperature fluctuations and difference between the temperature of the porous medium and calibration sample.In this study,the effect of temperature was explained based on the thermodynamic theory,and the rules of NMR porosity responses to temperature changes were identified through core physics experiments.In addition,a method for correcting the influence of temperature on NMR porosity measurement was proposed,and the possible factors that may affect its application were also discussed.展开更多
Mangrove forests in southern Iran are of high ecological and economic importance.These forests are being threatened because of uncontrolled harvesting to provide fodder for livestock.The objective of this study is to ...Mangrove forests in southern Iran are of high ecological and economic importance.These forests are being threatened because of uncontrolled harvesting to provide fodder for livestock.The objective of this study is to provide recommendations for appropriate harvesting intensities by quantifying the effect of different harvesting intensities on vegetative and vigor characteristics of mangrove trees.This study was conducted using a randomized complete block design comprising four treatments(10.00%,20.00%,and 30.00% trimming,along with a control)replicated three times.Vegetative characteristics were measured before and after trimming(five-year period)and analyzed using generalized linear model statistical analysis.The growths of the average diameter of canopy,canopy area,canopy volume,canopy height,tree height,and collar diameter in the control treatment were all significantly higher than those in the trimming treatments.In addition,there was a decreasing trend in leaf fresh and dry mass,leaf area index,total area of canopy leaves,and health status of tree in the trimming treatments.For example,the percentage change in fresh and dry leaf mass in the control treatment was positive(29.87% and 38.31%,respectively),whereas the trimming treatments of 10.00%,20.00% and 30.00% had negative effects(-7.01% and -4.79%,-11.32% and -14.30%,and -15.84% and -17.29%,respectively).In addition,the changes in leaf area index in the control(4.95%)and 30.00% trimming(-24.57%)treatments were the highest and lowest,respectively.The percentage change in soil organic matter in the control,10.00%,20.00%,and 30.00% treatments were 22.94%,-9.90%,-16.91%,and -18.68%,respectively.The study demonstrated that gray mangrove trees were highly sensitive to canopy trimming,with even minimal trimming intensities negatively affecting vegetative growth and soil organic matter.Therefore,it is recommended that cutting and trimming of mangrove trees should be prevented even at low intensity to preserve mangrove ecosystem health and resilience against environmental stressors.展开更多
An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were ob...An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.展开更多
In this study,umami taste intensity(UTI)and umami taste components in chicken breast(CB)and chickenspices blends were characterized using sensory and instrumental analysis.Our main objective was to assess the aroma-um...In this study,umami taste intensity(UTI)and umami taste components in chicken breast(CB)and chickenspices blends were characterized using sensory and instrumental analysis.Our main objective was to assess the aroma-umami taste interactions in different food matrices and reconcile the aroma-taste perception to assist future product development.The impact of key aroma,including vegetable-note"2-pentylfuran",meaty"methional",green"hexanal",and spicy-note-estragole and caryophyllene"on UTI was evaluated in monosodium glutamate and chicken extract.We found that spices significantly decreased UTI and umami taste components in CB.Interestingly,the perceptually similar odorants and tastants exhibited the potential to enhance UTI in food matrices.Methional was able to increase the UTI,whereas spicy and green-note components could reduce the UTI significantly.This information would be valuable to food engineers and formulators in aroma selection to control the UTI perceived by consumers,thus,improving the quality and acceptability of the chicken products.展开更多
Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding s...Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.展开更多
To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfa...To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2022YFF0709103,2022YFA1603601,2021YFF0601203,and 2021YFA1600703)the National Natural Science Foundation of China (Grant No.81430087)the Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences,Shanghai Branch (Grant No.JCYJ-SHFY-2021-010)。
文摘Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging.
文摘Cancer is a major cause of morbidity and mortality worldwide,and the incidence is increasing,highlighting the need for effective strategies to treat this disease.Exercise has emerged as fundamental therapeutic medicine in the management of cancer,associated with a lower risk of recur-rence and increased survival.Several avenues of research demonstrate reduction in growth,proliferation,and increased apoptosis of cancer cells,including breast,prostate,colorectal,and lung cancer,when cultured by serum collected after exercise in vitro(i.e.,the cultivation of cancer cell lines in an experimental setting,which simplifies the biological system and provides mechanistic insight into cell responses).The underlying mechanisms of exercise-induced cancer suppressive effects may be attributed to the alteration in circulating factors,such as skeletal muscle-induced cytokines(i.e.,myokines)and hormones.However,exercise-induced tumor suppressive effects and detailed information about training interventions are not well investigated,constraining more precise application of exercise medicine within clinical oncology.To date,it remains unclear what role different training modes(i.e.,resistance and aerobic training)as well as volume and intensity have on exercise-condi-tioned serum and its effects on cancer cells.Nevertheless,the available evidence is that a single bout of aerobic training at moderate to vigorous intensity has cancer suppressive effects,while for chronic training interventions,exercise volume appears to be an influential candidate driving cancer inhibitory effects regardless of training mode.Insights for future research investigating training modes,volume and intensity are provided to further our understanding of the effects of exercise-conditioned serum on cancer cells.
文摘1.Light intensity physical activity(PA)benefits health PA guidelines worldwide recommend that adults accumulate 150 min of moderate intensity or 75 min of vigorous intensity PA(moderate-to-vigorous PA(MVPA))weekly to achieve health benefits.1-3 Absent from these guidelines are recommendations for light intensity PA(LPA,e.g.,walking at a leisurely pace of 3 km/h or less,equivalent to 1.5-2.9 metabolic equivalents).
基金supported by the National Key R&D Program of China(Grant No.2017YFC1501604)the National Natural Science Foundation of China(Grant Nos.41875114 and 41875057).
文摘Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts.
文摘A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.
基金supported by the National Natural Science Foundation of China(52025028,52332008,52202273,52422208,and U23A20571)the Natural Science Foundation of Jiangsu Province(BK20210728)Funded by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘Deciphering the composite information within a light field through a single photodetector,without optical and mechanical structures,is challenging.The difficulty lies in extracting multi-dimensional optical information from a single dimension of photocurrent.Emerging photodetectors based on information reconstruction have potential,yet they only extract information contained in the photoresponse current amplitude(responsivity matrix),neglecting the hidden information in response edges driven by carrier dynamics.Herein,by adjusting the thickness of the absorption layer and the interface electric field strength in the perovskite photodiode,we extend the transport and relaxation time of carriers excited by photons of different wavelengths,maximizing the spectrum richness of the edge waveform in the light-dark transition process.For the first time,without the need for extra optical and electrical components,the reconstruction of two-dimensional information of light intensity and wavelength has been achieved.With the integration of machine learning algorithms into waveform data analysis,a wide operation spectrum range of 350–750 nm is available with a 100%accuracy rate.The restoration error has been lowered to less than 0.1%for light intensity.This work offers valuable insights for advancing perovskite applications in areas such as wavelength identification and spectrum imaging.
基金supported by a National Health and Medical Research Council(NHMRC)Investigator Grant(APP2008702)supported by the National Council for Scientific and Technological Developments-CNPq(process number 308772/2022-9)。
文摘Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns of accumulation of PA are differentially associated with hypertension and obesity in Australian women over 21 years.Specifically,we investigated whether,for the same weekly volume of PA,the number of sessions(frequency)and vigorousness of PA(intensity)were associated with a reduction in the occurrence of hypertension and obesity in women.Methods:Data from the 1973-1978 and 1946-1951 cohorts of the Australian Longitudinal Study on Women's Health were analyzed(n=20,588;12%-16%with a Bachelor's or higher degree).Self-reported PA,hypertension,height,and weight were collected using mail surveys every 3 years from 1998/2000 to 2019/2021.Generalized Estimating Equation models with a 3-year lag model were used to investigate the association of PA volume(metabolic equivalent min/week)(none;33-499;500-999;≥1000,weekly frequency(none;1-2 times;3-4times;5-7 times;≥8 times),and the proportion of vigorous PA to total volume of PA(none;0%;1%-33%;34%-66%;67%-100%)with odds of hypertension and obesity from 2000 to 2021.Results:The cumulative incidence of hypertension was 6%in the 1973-1978 and 23%in the 1946-1951 cohort;27%of women in the 1973-1978;and 15%in the 1946-1951 cohort developed obesity over the period.Overall,a higher volume of PA was associated with reduced odds of hypertension and obesity.When the volume of PA was considered,the odds of hypertension did not vary according to the frequency or intensity of PA.However,increased proportion of vigorous PA to the total volume of PA was associated with a small additional reduction in the risk of obe sity.Conclusion:PA volume appears to be more important than the pattern of accumulation for the prevention of hypertension and obesity.Incorporating more sessions,particularly of vigorous-intensity PA,may provide extra benefits for the prevention of obesity.
文摘This paper investigates the homogeneity of United States aircraft reconnaissance data and the impact of these data on the homogeneity of the tropical cyclone(TC)best track data for the seasons 1949-1987 generated by the China Meteorological Administration(CMA).The evaluation of the reconnaissance data shows that the minimum central sea level pressure(MCP)data are relatively homogeneous,whereas the maximum sustained wind(MSW)data show both overestimations and spurious abrupt changes.Statistical comparisons suggest that both the reconnaissance MCP and MSW were well incorporated into the CMA TC best track dataset.Although no spurious abrupt changes were evident in the reconnaissance-related best track MCP data,two spurious changepoints were identified in the remainder of the best-track MCP data.Furthermore,the influence of the reconnaissance MSWs seems to extend to the best track MSWs unrelated to reconnaissance,which might reflect the optimistic confidence in making higher estimates due to the overestimated extreme wind“observations”.In addition,the overestimation of either the reconnaissance MSWs or the best track MSWs was greater during the early decades compared to later decades,which reflects the important influence of reconnaissance data on the CMA TC best track dataset.The wind-pressure relationship(WPR)used in the CMA TC best track dataset is also evaluated and is found to overestimate the MSW,which may lead to inhomogeneity within the dataset between the aircraft reconnaissance era and the satellite era.
基金supported by the Natural Science Foundation of Zhejiang Province(No.LY23D060003)the Key Program of Science and Technology Innovation in Ningbo(2021Z114,2023Z118)sponsored by K.C.Wong Magna Fund in Ningbo University.
文摘In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L:D=12:12,14:10 and 10:14),temperature(15℃(LT),25℃(MT)and 30℃(HT))and light intensity(100,200 and 400μmol m^(−2)s^(−1),noted as LL,ML and HL,respectively)conditions.Then the maturation time,spore release number and chlorophyll fluorescence were analyzed.The results suggested that:1)The spore maturation time was accelerated by higher temperature or higher light intensity from 62 h to 36 h,and changes in day length accelerated the spore maturation to a certain extent as compared with 12:12 light/dark cycle;2)Higher light intensity significantly decreased the chlorophyll fluorescence(Fv′/Fm′,NPQ,rETRmax andα)of the mature reproductive segment under 30℃with 12:12 light/dark cycle.But when in the other photoperiods(10:14 and 14:10 conditions),the inhibitory effects of high light intensity were alleviated significantly;3)The optimum condition for the spore maturation and release was 12:12 light/dark cycle,25℃,400μmol m^(−2)s^(−1),with both shorter and longer photoperiod reducing the spore release number;4)Higher light intensity significantly increased the spore release number under 25℃,but these effects were alleviated by 30℃treatment.This study is the first attempt to elucidate the coincidence effects of photoperiod,temperature and light intensity on the reproduction of Ulva,which would help to reveal the mechanism of the rapid proliferation of green tide.
文摘Objectives:In the sphere of occupational intensity,nursing stands recognized for its inherently demanding nature,marked by a rapid succession of tasks.Our primary aim was to assess the level of job intensity within nursing by analyzing the frequency and duration of activities performed by nurses,instances of task overlap,and the distribution of break times within a primary healthcare center.Methods:This study was conducted using a descriptive working method.Nursing activities were recorded with the observation of six nurses,each monitored for 37.5 h.We used the Maribor System for measuring Quantity in Nursing Care in Primary Health Care Settings to measure the nursing care activities about direct patient care,indirect patient care,and other unproductive aspects through direct non-participant observations.Results:About 41.5%(n=1,640)of all nursing activities involving direct contact with patients,about 38.2%(n=1,508)was indirect patient care,where a large amount worked with paper files(n=666,16.9%).In addition,about 15.0%were other nursing activities(mostly computer work),and just 5.3%(n=210)of tasks were unproductive.The observational findings indicate a pronounced level of work intensity experienced by nurses in primary health clinics.Significantly,nurses were predominantly engaged in direct patient care tasks,often managing multiple activities simultaneously.Their transitions between tasks occurred approximately every 3 min,frequently without adequate intervals for breaks.Conclusions:This study highlights the need to shift nurses’focus from a task-centric approach to one centered on patient care.The prevailing emphasis on tasks may contribute to enduring fatigue and professional dissatisfaction.Consequently,there is an urgent need to redefine the scope of a nurse’s role and implement a comprehensive computer information system as an integral part of this redefined approach.
基金supported by Grants from the National Natural Science Foundation of China(42004010)the Beijing Natural Science Foundation(8204077)。
文摘Rapid acquisition of the kinematic deformation field and seismic intensity distribution of large earthquakes is crucial for postseismic emergency rescue,disaster assessment,and future seismic risk research.The advancement of GNSS observation and data processing makes it play an important role in this field,especially the high-frequency GNSS.We used the differential positioning method to calculate the 1 HZ GNSS data from 98 sites within 1000 km of the M_(S)7.4 Maduo earthquake epicenter.The kinematic deformation field and the distribution of the seismic intensity by using the peak ground velocity derived from displacement waveforms were obtained.The results show that:1)Horizontal coseismic response deformation levels ranging from 25 mm to 301 mm can be observed within a 1000 km radius from the epicenter.Coseismic response deformation on the east and west sides shows bilateral asymmetry,which markedly differs from the symmetry presented by surface rupture.2)The seismic intensity obtained through high-frequency GNSS and field investigations exhibits good consistency of the scope and orientation in the high seismic intensity area,although the former is generally slightly smaller than the latter.3)There may exist obstacles on the eastern side of the seismogenic fault.The Maduo earthquake induced a certain tectonic stress loading effect on the western Kunlun Pass-Jiangcuo fault(KPJF)and Maqin-Maqu segment,resulting in higher seismic risk in the future.
基金The National Key R&D Program of China under contract No.2022YFC2807604the Basic Scientific Fund for National Public Research Institutes of China under contract Nos 2022S02,2022Q03 and 2018S02+3 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2018SDKJ0105-3the National Natural Science Foundation of China under contract Nos 41876030,41976021,41876231,4190060432 and 41706220the program Impact and Response of Antarctic Seas to Climate Change under contract No.IRASCC 01-01-01Athe Taishan Scholars Project Fund under contract No.ts20190963。
文摘Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental properties of an eddy.However,the seasonal spatiotemporal variation in eddy intensity has not been examined from a global ocean perspective.In this study,we unveil the seasonal spatiotemporal characteristics of eddy intensity in the global ocean by using the latest satellite-altimetry-derived eddy trajectory data set.The results suggest that the eddy intensity has a distinct seasonal variation,reaching a peak in spring while attaining a minimum in autumn in the Northern Hemisphere and the opposite in the Southern Hemisphere.The seasonal variation of eddy intensity is more intense in the tropical-subtropical transition zones within latitudinal bands between 15°and 30°in the western Pacific Ocean,the northwestern Atlantic Ocean,and the eastern Indian Ocean because baroclinic instability in these areas changes sharply.Further analysis found that the seasonal variation of baroclinic instability precedes the eddy intensity by a phase of 2–3 months due to the initial perturbations needing time to grow into mesoscale eddies.
基金Project supported by the Science and Technology Project of Guangdong(Grant No.2020B010190001)the National Natural Science Foundation of China(Grant No.11974119)+1 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)the National Key R&D Program of China(Grant No.2018YFA0306200)。
文摘We present a new global model of collinear autocorrelation based on second harmonic generation nonlinearity.The model is rigorously derived from the nonlinear coupled wave equation specific to the autocorrelation measurement configuration,without requiring a specific form of the incident pulse function.A rigorous solution of the nonlinear coupled wave equation is obtained in the time domain and expressed in a general analytical form.The global model fully accounts for the nonlinear interaction and propagation effects within nonlinear crystals,which are not captured by the classical local model.To assess the performance of the global model compared to the classic local model,we investigate the autocorrelation signals obtained from both models for different incident pulse waveforms and different full-widthes at half-maximum(FWHMs).When the incident pulse waveform is Lorentzian with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 399.9 fs,while the classic local model predicts an FWHM of 331.4 fs.The difference between the two models is 68.6 fs,corresponding to an error of 17.2%.Similarly,for a sech-type incident pulse with an FWHM of 200 fs,the global model predicts an autocorrelation signal FWHM of 343.9 fs,while the local model predicts an FWHM of 308.8 fs.The difference between the two models is 35.1 fs,with an error of 10.2%.We further examine the behavior of the models for Lorentzian pulses with FWHMs of 100 fs,200 fs and 500 fs.The differences between the global and local models are 17.1 fs,68.6 fs and 86.0 fs,respectively,with errors approximately around 17%.These comparative analyses clearly demonstrate the superior accuracy of the global model in intensity autocorrelation modeling.
基金supported by the National Natural Science Foundation of China under Grant No.62276051the Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC0640Medical Industry Information Integration Collaborative Innovation Project of Yangtze Delta Region Institute under Grant No.U0723002。
文摘The estimation of pain intensity is critical for medical diagnosis and treatment of patients.With the development of image monitoring technology and artificial intelligence,automatic pain assessment based on facial expression and behavioral analysis shows a potential value in clinical applications.This paper reports a framework of convolutional neural network with global and local attention mechanism(GLA-CNN)for the effective detection of pain intensity at four-level thresholds using facial expression images.GLA-CNN includes two modules,namely global attention network(GANet)and local attention network(LANet).LANet is responsible for extracting representative local patch features of faces,while GANet extracts whole facial features to compensate for the ignored correlative features between patches.In the end,the global correlational and local subtle features are fused for the final estimation of pain intensity.Experiments under the UNBC-McMaster Shoulder Pain database demonstrate that GLA-CNN outperforms other state-of-the-art methods.Additionally,a visualization analysis is conducted to present the feature map of GLA-CNN,intuitively showing that it can extract not only local pain features but also global correlative facial ones.Our study demonstrates that pain assessment based on facial expression is a non-invasive and feasible method,and can be employed as an auxiliary pain assessment tool in clinical practice.
基金This paper is supported by“National Natural Science Foundation of China(Grant No.42204106)”.
文摘The measurement of nuclear magnetic resonance(NMR)porosity is affected by temperature.Without considering the impact of NMR logging tools,this phenomenon is mainly caused by variations in magnetization intensity of the measured system due to temperature fluctuations and difference between the temperature of the porous medium and calibration sample.In this study,the effect of temperature was explained based on the thermodynamic theory,and the rules of NMR porosity responses to temperature changes were identified through core physics experiments.In addition,a method for correcting the influence of temperature on NMR porosity measurement was proposed,and the possible factors that may affect its application were also discussed.
文摘Mangrove forests in southern Iran are of high ecological and economic importance.These forests are being threatened because of uncontrolled harvesting to provide fodder for livestock.The objective of this study is to provide recommendations for appropriate harvesting intensities by quantifying the effect of different harvesting intensities on vegetative and vigor characteristics of mangrove trees.This study was conducted using a randomized complete block design comprising four treatments(10.00%,20.00%,and 30.00% trimming,along with a control)replicated three times.Vegetative characteristics were measured before and after trimming(five-year period)and analyzed using generalized linear model statistical analysis.The growths of the average diameter of canopy,canopy area,canopy volume,canopy height,tree height,and collar diameter in the control treatment were all significantly higher than those in the trimming treatments.In addition,there was a decreasing trend in leaf fresh and dry mass,leaf area index,total area of canopy leaves,and health status of tree in the trimming treatments.For example,the percentage change in fresh and dry leaf mass in the control treatment was positive(29.87% and 38.31%,respectively),whereas the trimming treatments of 10.00%,20.00% and 30.00% had negative effects(-7.01% and -4.79%,-11.32% and -14.30%,and -15.84% and -17.29%,respectively).In addition,the changes in leaf area index in the control(4.95%)and 30.00% trimming(-24.57%)treatments were the highest and lowest,respectively.The percentage change in soil organic matter in the control,10.00%,20.00%,and 30.00% treatments were 22.94%,-9.90%,-16.91%,and -18.68%,respectively.The study demonstrated that gray mangrove trees were highly sensitive to canopy trimming,with even minimal trimming intensities negatively affecting vegetative growth and soil organic matter.Therefore,it is recommended that cutting and trimming of mangrove trees should be prevented even at low intensity to preserve mangrove ecosystem health and resilience against environmental stressors.
文摘An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.
基金supported by the National Natural Science Foundation of China (31622042)。
文摘In this study,umami taste intensity(UTI)and umami taste components in chicken breast(CB)and chickenspices blends were characterized using sensory and instrumental analysis.Our main objective was to assess the aroma-umami taste interactions in different food matrices and reconcile the aroma-taste perception to assist future product development.The impact of key aroma,including vegetable-note"2-pentylfuran",meaty"methional",green"hexanal",and spicy-note-estragole and caryophyllene"on UTI was evaluated in monosodium glutamate and chicken extract.We found that spices significantly decreased UTI and umami taste components in CB.Interestingly,the perceptually similar odorants and tastants exhibited the potential to enhance UTI in food matrices.Methional was able to increase the UTI,whereas spicy and green-note components could reduce the UTI significantly.This information would be valuable to food engineers and formulators in aroma selection to control the UTI perceived by consumers,thus,improving the quality and acceptability of the chicken products.
基金Under the auspices of the National Social Science Found of China(No.21XGL019)Hainan Provincial Natural Science Foundation of China(No.421RC1034)Professor/Doctor Research Foundation of Huizhou University(No.2022JB080)。
文摘Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.
基金funded by National Key Research and development project(2022YFD2201001)Project for Applied TechnologyResearch and Development in Heilongjiang Province(GA19C006).
文摘To study the effect of thinning intensity on the carbon sequestration by natural mixed coniferous and broad-leaf forests in Xiaoxing’an Mountains,China,we established six 100 m×100 m experimental plots in Dongfanghong For-est that varied in thinning intensity:plot A(10%),B(15%),C(20%),D(25%),E(30%),F(35%),and the control sample area(0%).A principal component analysis was performed using 50 different variables,including species diversity,soil fertility,litter characteristics,canopy structure param-eters,and seedling regeneration parameters.The effects of thinning intensity on carbon sequestration were strongest in plot E(0.75),followed by D(0.63),F(0.50),C(0.48),B(0.22),A(0.11),and the control(0.06).The composite score of plot E was the highest,indicating that the carbon sequestration effect was strongest at a thinning intensity of 30%.These findings provide useful insights that could aid the management of natural mixed coniferous and broadleaf forests in Xiaoxing’an Mountains,China.This information has implications for future studies of these forests,and the methods used could aid future ecological assessments of the natural forests in Xiaoxing’an Mountains,China.