[Objective] This study was to explore the mutagenic effect of 60Co γ-ray on Solanum tuberosum chromosomes.[Method] The 60Co γ-ray at different irradiation doses was applied to treat the minitubers of potato variety ...[Objective] This study was to explore the mutagenic effect of 60Co γ-ray on Solanum tuberosum chromosomes.[Method] The 60Co γ-ray at different irradiation doses was applied to treat the minitubers of potato variety 'Favorita',and the genomic mutations in VM1 and VM2 gene rations in treatments with different doses were analyzed by SRAP markers.[Resalt] Thirty pairs of SRAP primers out of 88 pairs exhibited polymorphism with a rate of 34.1% in the bulked selection of VM1 generation.A total of 225 bands were obtained,of which 64 were polymorphic with a rate of 28.4%.The polymorphism was reflected in the forms of deleted bands and added bands.Based on the result of the bulked selection of VM1 generation,25 primers with polymorphism were selected to scan VM2 generation.Five primers performed poorly,and nine of the rest 20 pairs revealed polymorphism and obtained nine polymorphic bands,of which only four bands were detected in VM1 generation and the other five ones were newly deleted bands.Only 9.8% of the bands detected in VM1 generation were obtained in VM2 generation.Eventually,nine stable and dear polymorphic bands were recovered and cloned,and DNA sequences of six bands of them were acquired by sequencing.According to the comparative analysis,five fragments sequences were similar to potato chromosome with a similarity rate of 77%-89%,three of them located at the resistance gene cluster; another one fragment had a similarity of 93% with some regions of the No.5 chromosome in tomato.[Conclusion] 60Co γ-ray irradiation can cause mutation of genomic DNA in potato;there is no significant correlation between the number of polymorphic bands and the irradiation dose; potymorphic bands are characterized by a larger number of deleted bands than that of the added ones.展开更多
We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dis...We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA-h)/g which is 45 higher than the theoretical value of commercial graphite anode.展开更多
[Objective] To study the effect of 60Co γ-rays irradiation on Botrytis cinerea biocontrol strains—Bacillus subtilis NCD-2. [Method] NCD-2 cells were irradiated at different doses of γ-rays from 100 to 2 000 Gy. The...[Objective] To study the effect of 60Co γ-rays irradiation on Botrytis cinerea biocontrol strains—Bacillus subtilis NCD-2. [Method] NCD-2 cells were irradiated at different doses of γ-rays from 100 to 2 000 Gy. The strains were screened by plate confrontation method and Oxford cup diffusion. [Result] The curves of the relationship of irradiation dose and mutation and lethal rate were obtained. The results showed that lethal rate increased with the increasing of irradiation dose. The lethal rate of 1 000 Gy irradiation dose reached 99.50%. The mutation rate increased below 500 Gy and decreased above 500 Gy. The highest mutation rate occurred when the irradiation dose was between 400 and 700 Gy, and the average mutation rate was above 15%. The optimal irradiation dose was 500 Gy, when the average mutation rate was 26.51% and lethal rate was 77.71%. [Conclusion] This study provided references for γ-rays irradiation mutation of Bacillus subtilis.展开更多
A novel thermo-sensitive switching membrane has been prepared by radiation-induced simultaneous grafting N-isopropylacrylamide (NIPAAm) onto chitosan membrane. Fourier transform infrared spectroscopy (FTIR) was us...A novel thermo-sensitive switching membrane has been prepared by radiation-induced simultaneous grafting N-isopropylacrylamide (NIPAAm) onto chitosan membrane. Fourier transform infrared spectroscopy (FTIR) was used to identify the structure of the grafted membranes. The surface morphology of the grafted membrane was observed from scanning electron microscopy (SEM). Pure water flux measurements showed that water flux of the grafted membrane decreased with the increase of temperature, while that of chitosan membrane was constant. It was proved that grafted membrane was sensitive to temperature.展开更多
A porous monolithic sol-gel column with the solution of methacryloxypropyltrimethoxysilane in toluene with an acid catalyst was prepared in the presence and absence of sodium dodecyl sulfate. In situ polymerization wa...A porous monolithic sol-gel column with the solution of methacryloxypropyltrimethoxysilane in toluene with an acid catalyst was prepared in the presence and absence of sodium dodecyl sulfate. In situ polymerization was carded out by γ-ray irradiation within the capillary. The γ-radiation-initiated synthesis could generate radicals directly on the monomer avoiding use of any initiator. The chromatographic behavior of the capillary monolithic columns were studied in the modes of CEC, p-CEC and low pressure-driven separation, all the tests exhibited reversed-phase character. It provided a viable alternative to either thermally initiated or photo polymerization method for the preparation of monolithic columns.展开更多
Magnetoresistive random access memories(MRAMs)have drawn the attention of radiation researchers due to their potential high radiation tolerance.In particular,spin-orbit torque MRAM(SOT-MRAM)has the best performance on...Magnetoresistive random access memories(MRAMs)have drawn the attention of radiation researchers due to their potential high radiation tolerance.In particular,spin-orbit torque MRAM(SOT-MRAM)has the best performance on endurance and access speed,which is considered to be one of the candidates to replace SRAM for space application.However,little attention has been given to theγ-ray irradiation effect on the SOT-MRAM device yet.Here,we report the Co-60 irradiation results for both SOT(spin-orbit torque)magnetic films and SOT-Hall devices with the same stacks.The properties of magnetic films are not affected by radiation even with an accumulated dose up to 300 krad(Si)while the magnetoelectronic properties of SOTHall devices exhibit a reversible change behavior during the radiation.We propose a non-equilibrium anomalous Hall effect model to understand the phenomenon.Achieved results and proposed analysis in this work can be used for the material and structure design of memory cell in radiation-hardened SOT-MRAM.展开更多
Mutagenesis and retrotransposons have a close relationship, but little attention has been paid yet to the activity of retrotransposons produced by physical mutagens. The variation of retrotransposon WIS 2-1A activity ...Mutagenesis and retrotransposons have a close relationship, but little attention has been paid yet to the activity of retrotransposons produced by physical mutagens. The variation of retrotransposon WIS 2-1A activity in wheat (Triticum aestivum L.) embryos at three different growth times (30 h, 45 h and 60 h) was investigated after they had been treated with N^+ implantation in a vacuum of 5× 10^-2 Pa and irradiation by ^60Coγ-ray respectively. For each of the three growth times the expression of WIS 2-1A showed almost entirely a same trend of downregulation, upregulation, then downregulation, and upregulation again with the increase in dose of N^+ implantation, but the expression appeared irregular with the increase in irradiation of ^60Coγ-ray. In conclusion, the acutely activating effect of WIS 2-1A stimulated by vacuum and high dose N^+ implantation within a shorter incubation time may provide a convenient tool to advance the research on mutagenic breeding and function genes.展开更多
To investigate the degradation of FB1 in aqueous acetonitrile and corn af-ter γ-ray irradiation, the radiolytic products of FB1 was detected preliminarily. The results showed that γ-ray irradiation could degrade FB1...To investigate the degradation of FB1 in aqueous acetonitrile and corn af-ter γ-ray irradiation, the radiolytic products of FB1 was detected preliminarily. The results showed that γ-ray irradiation could degrade FB1 in aqueous acetonitrile;When the radiation dose was below 9 kGy, the degradation of FB1 in corn was not significant. The degradation rates of FB1 with concentrations of 0.8 mg/ml, 10.0 μg/ml, 1.0 μg/ml and 50 ng/ml after irradiation at 9 kGy were 22.5%, 51.0%, 59.0% and 64.8% respectively; when irradiation dose was increased to 100 kGy, the degrada-tion rate of FB1 with concentration of 0.8 mg/ml was up to 90%, and it was nearly 100% when irradiation dose was increased to 200 kGy. No representative products of FB1 were detected by LC/MS/MS analysis.展开更多
[Objective] This study aimed to investigate the effects of different pretreat- ments on enzymatic saccharification of Miscanthus sinensis and improve reducing sugar yield in the enzymolysis process. [Method] M. sinens...[Objective] This study aimed to investigate the effects of different pretreat- ments on enzymatic saccharification of Miscanthus sinensis and improve reducing sugar yield in the enzymolysis process. [Method] M. sinensis was pretreated with 60Co y-ray irradiation and alkaline hydrogen peroxide, to analyze their effects on re- ducing sugar yield of enzymatic hydrolysis. [Result] After pretreatment with 400 kGy 60Co y-ray irradiation, reducing sugar yield in the enzymolysis process of M sinensis was 76.24 mg/g; after synergic pretreatment with 400 kGy 60Co y-ray irradiation and alkaline hydrogen peroxide, reducing sugar yield in the enzymolysis process of M. sinensis was 505.08 mg/g, which was improved by 5.6 times compared to that in pretreatment with 400 kGy 60Co y-ray irradiation. Based on process optimization, the optimal hydrolysis conditions were obtained: pretreatment temperature 30 ℃, NaOH concentration 1.2%, hydrogen peroxide concentration 2%, pretreatment time 6 h. [Conclusion] Synergic pretreatment with 60Co y-ray irradiation and alkaline hydrogen peroxide could significantly improve reducing sugar yield in the enzymolysis process of M. sinensis, which provided a new theoretical basis for preparing fuel ethanol with M. sinensis.展开更多
By using a new method, ^60Co γ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nanop...By using a new method, ^60Co γ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM), respectively. The radiation formation mechanism was also discussed. The results show that the absorbed dose can greatly influence the structure, morphology and magnetic properties of the products. XRD and TEM studies show that the product prepared by γ-ray irradiation (10 kGy) is pure FesO4 phase and the mean diameter of these nano-particles is about 21 nm. The Fe3O4 nano-particles synthesized by γ-ray irradiation (10 kGy) are mainly in small cubic shape and the size uniformity of these particles is good.展开更多
The degradation of nitrobenzene(NB) by γ ray irradiation was studied. The influences of dose rate and initial NB concentration were investigated in details. At a dose rate of 55 Gy/min, the degradation kinetics was ...The degradation of nitrobenzene(NB) by γ ray irradiation was studied. The influences of dose rate and initial NB concentration were investigated in details. At a dose rate of 55 Gy/min, the degradation kinetics was pseudo first order at NB concentrations from 0 2 mmol/L to 4 0 mmol/L. At an initial NB concentration of 0 8 mmol/L, the degradation of NB at various dose rates also followed pseudo first order kinetics. Dissolved oxygen was found to have a positive effect on NB degradation. The degradation products were identified as nitrophenol, nitrosobenzene, and hydroquinone, and so on. Based on the product analysis, possible degradation pathways of nitrobenzene were proposed.展开更多
In order to carry out decolorization, sludge protein solution, a dark brown close to black solution from activated sludge, was subjected to ^(60)Co γ-ray irradiation in the presence of hydrogen peroxide. UV/Vis spect...In order to carry out decolorization, sludge protein solution, a dark brown close to black solution from activated sludge, was subjected to ^(60)Co γ-ray irradiation in the presence of hydrogen peroxide. UV/Vis spectrophotometric method was used to investigate the effect of H2O2 on the coloration apparent kinetics and rate constants of sludge protein solution under γ-ray irradiation. In addition, the effects of irradiation dose, initial sludge protein solution concentration, and pH value on the decolorization efficiency of sludge protein solution were studied. Results showed that the decolorization apparent kinetics of sludge protein solution was a first-order reaction. The solution decolorization percentage increased with the increase of irradiation dose or the decrease of initial sludge protein solution concentration. The examination results of pH value showed that the sludge protein solution could be more efficiently decolorized in alkaline media than in acid media. Moreover, sensory evaluation and foamability analysis indicated that irradiated samples under H2O2 oxidation showed better sensory score and foamability.展开更多
The effects of ^60Co γ-ray irradiation on the DC characteristics of AlGaN/GaN enhancement-mode high-electron- mobility transistors (E-mode HEMTs) are investigated. The results show that having been irradiated by^60...The effects of ^60Co γ-ray irradiation on the DC characteristics of AlGaN/GaN enhancement-mode high-electron- mobility transistors (E-mode HEMTs) are investigated. The results show that having been irradiated by^60Co γ-rays at a dose of 3 Mrad (Si), the E-mode HEMT reduces its saturation drain current and maximal transconductance by 6% and 5%, respectively, and significantly increases both forward and reverse gate currents, while its threshold voltage is affected only slightly. The obvious performance degradation of E-mode A1GaN/GaN HEMTs is consistent with the creation of electronegative surface state charges in the source-gate spacer and gate-drain spacer after being irradiated.展开更多
The propoerties of radicals fromγ-ray irradiated silk fabrics were studied by electron spin resonance method(ESR).The ESR spectra of silk fabrics irradiated in N2 showed a doublet at room temperature,The doublet beca...The propoerties of radicals fromγ-ray irradiated silk fabrics were studied by electron spin resonance method(ESR).The ESR spectra of silk fabrics irradiated in N2 showed a doublet at room temperature,The doublet became a singlet at g=2.0057 after placing the sample in air for 24 hours.This can be explained by formation of peroxide radicals.The radical concentration of the irradiated silk fabric and the decay rate of radicals are significantly affected by irradiation conditions.which include the absorbed dose.atmosphere,and water content of the silk fabric samples.However,no dose rate effect on the radical concentration was observed.The results are of help in our practice of property modification of silk products by radiation graft copolymerization.展开更多
The 60Co γ radiation effect on spherical open-porous polymethylphenylvinyl siloxane foam was studied in different atmospheres at room temperature. The physical and chemical behaviors of unirradiated and irradiated ma...The 60Co γ radiation effect on spherical open-porous polymethylphenylvinyl siloxane foam was studied in different atmospheres at room temperature. The physical and chemical behaviors of unirradiated and irradiated materials were studied by SEM, FTIR, TG (thermal gravity analysis), GC/MS(gas chromatography and mass spec -troscopy), etc. The present results indicate that the yields of gas products increase linearly with the dose increasing. Furthermore, some changes in material’s microscopic form, composition, structure and mechanical property were observed, but the maxi -mum thermal decomposition temperature of the sample alters little and the dose gives no effect on it.展开更多
Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significan...Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significant concern.The blow-off impulse(BOI)is a crucial physical quantity for investigating material damage induced by X-ray irradiation.However,the accurate calculation of BOI is challenging,particularly for large deformations of materials with complex configurations.In this study,we develop a novel two-dimensional particle-in-cell code,Xablation2D,to calculate BOIs under far-field X-ray irradiation.This significantly reduces the dependence of the numerical simulation on the grid shape.The reliability of this code is verified by simulation results from open-source codes,and the calculated BOIs are consistent with the experimental and analytical results.展开更多
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou...The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.展开更多
Timer error as well as its convention is very important for dose accuracy during irradiation. This paper determines the timer error of irradiators at Secondary Standard Dosimetry Laboratory (SSDL) in Nigeria. The irra...Timer error as well as its convention is very important for dose accuracy during irradiation. This paper determines the timer error of irradiators at Secondary Standard Dosimetry Laboratory (SSDL) in Nigeria. The irradiators are Cs-137 OB6 irradiator and X-ray irradiators at the Protection level SSDL;and Co-60 irradiator at the Therapy Level SSDL. PTW UNIDOS electrometer and LS01 Ionization chamber were used at the Protection Level to obtain doses for both Cs-137 OB6 and X-ray irradiators while an IBA farmer type ionization chamber and an IBA DOSE 1 electrometer were used at the Protection Level SSDL. Single/multiple exposure method and graphical method were used in the determination of the timer error for the three irradiators. The timer error obtained for Cs-137 OB6 irradiator was 0.48 ± 0.01 s, the timer error for the X-ray irradiator was 0.09 ± 0.01 s while the timer error obtained for GammaBeam X200 was 1.21 ± 0.04 s. It was observed that the timer error is not affected by source to detector distance. It was also observed that the timer error of Co-60 Gamma X200 irradiator is increasing with the age of the machine. Source to detector distance and field size do not contribute towards the timer error of the irradiators. The timer error of the Co-60 Gamma X200 irradiator (the only irradiator among the irradiators with a pneumatic system) increases with the age of the irradiator.展开更多
Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions...Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions are irradiated on a thyristor device for a long time,the electrical characteristics of the device change,which may eventually cause irreversible damage.In this study,with the thyristor switch of the commutation circuit in the quench protection system(QPS)of a fusion device as the study object,the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established.Subsequently,a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis.In addition,the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation,providing valuable guidelines for the maintenance and renovation of the QPS.展开更多
In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after...In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.展开更多
文摘[Objective] This study was to explore the mutagenic effect of 60Co γ-ray on Solanum tuberosum chromosomes.[Method] The 60Co γ-ray at different irradiation doses was applied to treat the minitubers of potato variety 'Favorita',and the genomic mutations in VM1 and VM2 gene rations in treatments with different doses were analyzed by SRAP markers.[Resalt] Thirty pairs of SRAP primers out of 88 pairs exhibited polymorphism with a rate of 34.1% in the bulked selection of VM1 generation.A total of 225 bands were obtained,of which 64 were polymorphic with a rate of 28.4%.The polymorphism was reflected in the forms of deleted bands and added bands.Based on the result of the bulked selection of VM1 generation,25 primers with polymorphism were selected to scan VM2 generation.Five primers performed poorly,and nine of the rest 20 pairs revealed polymorphism and obtained nine polymorphic bands,of which only four bands were detected in VM1 generation and the other five ones were newly deleted bands.Only 9.8% of the bands detected in VM1 generation were obtained in VM2 generation.Eventually,nine stable and dear polymorphic bands were recovered and cloned,and DNA sequences of six bands of them were acquired by sequencing.According to the comparative analysis,five fragments sequences were similar to potato chromosome with a similarity rate of 77%-89%,three of them located at the resistance gene cluster; another one fragment had a similarity of 93% with some regions of the No.5 chromosome in tomato.[Conclusion] 60Co γ-ray irradiation can cause mutation of genomic DNA in potato;there is no significant correlation between the number of polymorphic bands and the irradiation dose; potymorphic bands are characterized by a larger number of deleted bands than that of the added ones.
基金This work was supported by the National Natural Science Foundation of China (No.21373197), the 100 Talents Program of the Chinese Academy of Sciences, USTC Startup and the Fundamental Research Funds for the Central Universities (WK2060140018).
文摘We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rCO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA-h)/g which is 45 higher than the theoretical value of commercial graphite anode.
基金Supported by Being Science and Technology Institute "Bud Plan" Project(No.022)~~
文摘[Objective] To study the effect of 60Co γ-rays irradiation on Botrytis cinerea biocontrol strains—Bacillus subtilis NCD-2. [Method] NCD-2 cells were irradiated at different doses of γ-rays from 100 to 2 000 Gy. The strains were screened by plate confrontation method and Oxford cup diffusion. [Result] The curves of the relationship of irradiation dose and mutation and lethal rate were obtained. The results showed that lethal rate increased with the increasing of irradiation dose. The lethal rate of 1 000 Gy irradiation dose reached 99.50%. The mutation rate increased below 500 Gy and decreased above 500 Gy. The highest mutation rate occurred when the irradiation dose was between 400 and 700 Gy, and the average mutation rate was above 15%. The optimal irradiation dose was 500 Gy, when the average mutation rate was 26.51% and lethal rate was 77.71%. [Conclusion] This study provided references for γ-rays irradiation mutation of Bacillus subtilis.
基金support by the National Natural Science Foundation of China(No.50573073).
文摘A novel thermo-sensitive switching membrane has been prepared by radiation-induced simultaneous grafting N-isopropylacrylamide (NIPAAm) onto chitosan membrane. Fourier transform infrared spectroscopy (FTIR) was used to identify the structure of the grafted membranes. The surface morphology of the grafted membrane was observed from scanning electron microscopy (SEM). Pure water flux measurements showed that water flux of the grafted membrane decreased with the increase of temperature, while that of chitosan membrane was constant. It was proved that grafted membrane was sensitive to temperature.
文摘A porous monolithic sol-gel column with the solution of methacryloxypropyltrimethoxysilane in toluene with an acid catalyst was prepared in the presence and absence of sodium dodecyl sulfate. In situ polymerization was carded out by γ-ray irradiation within the capillary. The γ-radiation-initiated synthesis could generate radicals directly on the monomer avoiding use of any initiator. The chromatographic behavior of the capillary monolithic columns were studied in the modes of CEC, p-CEC and low pressure-driven separation, all the tests exhibited reversed-phase character. It provided a viable alternative to either thermally initiated or photo polymerization method for the preparation of monolithic columns.
基金This work is financially supported by Strategic Priority Research Program of the CAS(Grant No.XDA18000000)Youth Innovation Promotion Association of CAS(Grant No.2015097).
文摘Magnetoresistive random access memories(MRAMs)have drawn the attention of radiation researchers due to their potential high radiation tolerance.In particular,spin-orbit torque MRAM(SOT-MRAM)has the best performance on endurance and access speed,which is considered to be one of the candidates to replace SRAM for space application.However,little attention has been given to theγ-ray irradiation effect on the SOT-MRAM device yet.Here,we report the Co-60 irradiation results for both SOT(spin-orbit torque)magnetic films and SOT-Hall devices with the same stacks.The properties of magnetic films are not affected by radiation even with an accumulated dose up to 300 krad(Si)while the magnetoelectronic properties of SOTHall devices exhibit a reversible change behavior during the radiation.We propose a non-equilibrium anomalous Hall effect model to understand the phenomenon.Achieved results and proposed analysis in this work can be used for the material and structure design of memory cell in radiation-hardened SOT-MRAM.
基金supported by National Natural Science Foundation of China(Nos.10505018,30800204)the Chinese Ministry of Agriculture(No.200803034)
文摘Mutagenesis and retrotransposons have a close relationship, but little attention has been paid yet to the activity of retrotransposons produced by physical mutagens. The variation of retrotransposon WIS 2-1A activity in wheat (Triticum aestivum L.) embryos at three different growth times (30 h, 45 h and 60 h) was investigated after they had been treated with N^+ implantation in a vacuum of 5× 10^-2 Pa and irradiation by ^60Coγ-ray respectively. For each of the three growth times the expression of WIS 2-1A showed almost entirely a same trend of downregulation, upregulation, then downregulation, and upregulation again with the increase in dose of N^+ implantation, but the expression appeared irregular with the increase in irradiation of ^60Coγ-ray. In conclusion, the acutely activating effect of WIS 2-1A stimulated by vacuum and high dose N^+ implantation within a shorter incubation time may provide a convenient tool to advance the research on mutagenic breeding and function genes.
基金Supported by Agricultural Science and Technology Innovation Fund of Jiangsu Province(CX(12)5014)~~
文摘To investigate the degradation of FB1 in aqueous acetonitrile and corn af-ter γ-ray irradiation, the radiolytic products of FB1 was detected preliminarily. The results showed that γ-ray irradiation could degrade FB1 in aqueous acetonitrile;When the radiation dose was below 9 kGy, the degradation of FB1 in corn was not significant. The degradation rates of FB1 with concentrations of 0.8 mg/ml, 10.0 μg/ml, 1.0 μg/ml and 50 ng/ml after irradiation at 9 kGy were 22.5%, 51.0%, 59.0% and 64.8% respectively; when irradiation dose was increased to 100 kGy, the degrada-tion rate of FB1 with concentration of 0.8 mg/ml was up to 90%, and it was nearly 100% when irradiation dose was increased to 200 kGy. No representative products of FB1 were detected by LC/MS/MS analysis.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2012AA101804)~~
文摘[Objective] This study aimed to investigate the effects of different pretreat- ments on enzymatic saccharification of Miscanthus sinensis and improve reducing sugar yield in the enzymolysis process. [Method] M. sinensis was pretreated with 60Co y-ray irradiation and alkaline hydrogen peroxide, to analyze their effects on re- ducing sugar yield of enzymatic hydrolysis. [Result] After pretreatment with 400 kGy 60Co y-ray irradiation, reducing sugar yield in the enzymolysis process of M sinensis was 76.24 mg/g; after synergic pretreatment with 400 kGy 60Co y-ray irradiation and alkaline hydrogen peroxide, reducing sugar yield in the enzymolysis process of M. sinensis was 505.08 mg/g, which was improved by 5.6 times compared to that in pretreatment with 400 kGy 60Co y-ray irradiation. Based on process optimization, the optimal hydrolysis conditions were obtained: pretreatment temperature 30 ℃, NaOH concentration 1.2%, hydrogen peroxide concentration 2%, pretreatment time 6 h. [Conclusion] Synergic pretreatment with 60Co y-ray irradiation and alkaline hydrogen peroxide could significantly improve reducing sugar yield in the enzymolysis process of M. sinensis, which provided a new theoretical basis for preparing fuel ethanol with M. sinensis.
基金This work was supported by the Natural Science Foundation of Henan Province under grant No. 0611023900.
文摘By using a new method, ^60Co γ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM), respectively. The radiation formation mechanism was also discussed. The results show that the absorbed dose can greatly influence the structure, morphology and magnetic properties of the products. XRD and TEM studies show that the product prepared by γ-ray irradiation (10 kGy) is pure FesO4 phase and the mean diameter of these nano-particles is about 21 nm. The Fe3O4 nano-particles synthesized by γ-ray irradiation (10 kGy) are mainly in small cubic shape and the size uniformity of these particles is good.
文摘The degradation of nitrobenzene(NB) by γ ray irradiation was studied. The influences of dose rate and initial NB concentration were investigated in details. At a dose rate of 55 Gy/min, the degradation kinetics was pseudo first order at NB concentrations from 0 2 mmol/L to 4 0 mmol/L. At an initial NB concentration of 0 8 mmol/L, the degradation of NB at various dose rates also followed pseudo first order kinetics. Dissolved oxygen was found to have a positive effect on NB degradation. The degradation products were identified as nitrophenol, nitrosobenzene, and hydroquinone, and so on. Based on the product analysis, possible degradation pathways of nitrobenzene were proposed.
基金Supported by Foundation of Universities Double-Five Science and Technology Program of Tianjin(No.W20080003)
文摘In order to carry out decolorization, sludge protein solution, a dark brown close to black solution from activated sludge, was subjected to ^(60)Co γ-ray irradiation in the presence of hydrogen peroxide. UV/Vis spectrophotometric method was used to investigate the effect of H2O2 on the coloration apparent kinetics and rate constants of sludge protein solution under γ-ray irradiation. In addition, the effects of irradiation dose, initial sludge protein solution concentration, and pH value on the decolorization efficiency of sludge protein solution were studied. Results showed that the decolorization apparent kinetics of sludge protein solution was a first-order reaction. The solution decolorization percentage increased with the increase of irradiation dose or the decrease of initial sludge protein solution concentration. The examination results of pH value showed that the sludge protein solution could be more efficiently decolorized in alkaline media than in acid media. Moreover, sensory evaluation and foamability analysis indicated that irradiated samples under H2O2 oxidation showed better sensory score and foamability.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 50932002)
文摘The effects of ^60Co γ-ray irradiation on the DC characteristics of AlGaN/GaN enhancement-mode high-electron- mobility transistors (E-mode HEMTs) are investigated. The results show that having been irradiated by^60Co γ-rays at a dose of 3 Mrad (Si), the E-mode HEMT reduces its saturation drain current and maximal transconductance by 6% and 5%, respectively, and significantly increases both forward and reverse gate currents, while its threshold voltage is affected only slightly. The obvious performance degradation of E-mode A1GaN/GaN HEMTs is consistent with the creation of electronegative surface state charges in the source-gate spacer and gate-drain spacer after being irradiated.
文摘The propoerties of radicals fromγ-ray irradiated silk fabrics were studied by electron spin resonance method(ESR).The ESR spectra of silk fabrics irradiated in N2 showed a doublet at room temperature,The doublet became a singlet at g=2.0057 after placing the sample in air for 24 hours.This can be explained by formation of peroxide radicals.The radical concentration of the irradiated silk fabric and the decay rate of radicals are significantly affected by irradiation conditions.which include the absorbed dose.atmosphere,and water content of the silk fabric samples.However,no dose rate effect on the radical concentration was observed.The results are of help in our practice of property modification of silk products by radiation graft copolymerization.
基金Supported by the China Academy of Engineering Physics (CAEP Project No. 1999Z0503)
文摘The 60Co γ radiation effect on spherical open-porous polymethylphenylvinyl siloxane foam was studied in different atmospheres at room temperature. The physical and chemical behaviors of unirradiated and irradiated materials were studied by SEM, FTIR, TG (thermal gravity analysis), GC/MS(gas chromatography and mass spec -troscopy), etc. The present results indicate that the yields of gas products increase linearly with the dose increasing. Furthermore, some changes in material’s microscopic form, composition, structure and mechanical property were observed, but the maxi -mum thermal decomposition temperature of the sample alters little and the dose gives no effect on it.
基金supported by the National Science Foundation of China(No.12347103)the Fundamental Research Funds for the Central Universities(No.226-2022-00216)。
文摘Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significant concern.The blow-off impulse(BOI)is a crucial physical quantity for investigating material damage induced by X-ray irradiation.However,the accurate calculation of BOI is challenging,particularly for large deformations of materials with complex configurations.In this study,we develop a novel two-dimensional particle-in-cell code,Xablation2D,to calculate BOIs under far-field X-ray irradiation.This significantly reduces the dependence of the numerical simulation on the grid shape.The reliability of this code is verified by simulation results from open-source codes,and the calculated BOIs are consistent with the experimental and analytical results.
基金supported by the National Natural Science Foundation of China(Nos.12022515 and 11975304)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.Y202063)。
文摘The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.
文摘Timer error as well as its convention is very important for dose accuracy during irradiation. This paper determines the timer error of irradiators at Secondary Standard Dosimetry Laboratory (SSDL) in Nigeria. The irradiators are Cs-137 OB6 irradiator and X-ray irradiators at the Protection level SSDL;and Co-60 irradiator at the Therapy Level SSDL. PTW UNIDOS electrometer and LS01 Ionization chamber were used at the Protection Level to obtain doses for both Cs-137 OB6 and X-ray irradiators while an IBA farmer type ionization chamber and an IBA DOSE 1 electrometer were used at the Protection Level SSDL. Single/multiple exposure method and graphical method were used in the determination of the timer error for the three irradiators. The timer error obtained for Cs-137 OB6 irradiator was 0.48 ± 0.01 s, the timer error for the X-ray irradiator was 0.09 ± 0.01 s while the timer error obtained for GammaBeam X200 was 1.21 ± 0.04 s. It was observed that the timer error is not affected by source to detector distance. It was also observed that the timer error of Co-60 Gamma X200 irradiator is increasing with the age of the machine. Source to detector distance and field size do not contribute towards the timer error of the irradiators. The timer error of the Co-60 Gamma X200 irradiator (the only irradiator among the irradiators with a pneumatic system) increases with the age of the irradiator.
基金supported by the Fundamental Research Funds for the Central University(No.JZ2023HGTA0182)Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)。
文摘Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions are irradiated on a thyristor device for a long time,the electrical characteristics of the device change,which may eventually cause irreversible damage.In this study,with the thyristor switch of the commutation circuit in the quench protection system(QPS)of a fusion device as the study object,the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established.Subsequently,a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis.In addition,the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation,providing valuable guidelines for the maintenance and renovation of the QPS.
基金supported by the National Natural Science Foundation of China(Grant Nos.51871222,52171021,and 51801214)Liaoning Provincial Natural Science Foundation(2019-MS-335)the research fund of SYNL。
文摘In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.