We restudy the possible contribution of mature gamma-ray pulsars to cosmic ray positrons based on the new version of outer gap model. In this model, the inclination angle and average properties of the outer gap are ta...We restudy the possible contribution of mature gamma-ray pulsars to cosmic ray positrons based on the new version of outer gap model. In this model, the inclination angle and average properties of the outer gap are taken into account, and more mature pulsars can have the outer gap and emit high energy photons. Half of the primary particles in the outer gaps will flow back toward the star surface and emit synchrotron photons, which can produce electron/positron pairs by the cascade of pair production. Some of these pairs will escape from the light cylinder and be accelerated to relativistic energies in the pulsar wind driven by low-frequency electromagnetic waves. Using a Monte Carlo method, we obtain a sample of mature gamma-ray pulsars and then calculate the production of the positrons from these pulsars. The observed excess of cosmic positrons can be well explained by this model.展开更多
The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and p...The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and predicted by the pulse timing models. With the detected pulse phase, the satellite position with respect to the Earth center can be calculated along the line-of-sight to the pulsar. Using three pulsars, the satellite position in the in- ertial frame can be resolved. The extended Kalman filter (EKF) algorithm is designed to incorporate the range measurements with the satellite dynamics. Simulation verification shows that the proposed algorithm can accu- rately determine the satellite orbit, with the position error less than 100 m. Furthermore, the factors influencing the navigation performance are also discussed.展开更多
In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that di...In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform.展开更多
In this paper,we have investigated accreting millisecond X-ray pulsars,which are rapidly rotating neutron stars in low-mass X-ray binaries.These systems exhibit coherent X-ray pulsations that arise when the accretion ...In this paper,we have investigated accreting millisecond X-ray pulsars,which are rapidly rotating neutron stars in low-mass X-ray binaries.These systems exhibit coherent X-ray pulsations that arise when the accretion flow is magnetically channeled to the stellar surface.Here,we have developed the fundamental equations for an accretion disk around accreting millisecond X-ray pulsars in the presence of a dynamo generated magnetic field in the inner part of the disk.We have also formulated the numerical method for the structure equations in the inner region of the disk and the highest accretion rate is enough to form the inner region of the disk,which is overpowered by radiation pressure and electron scattering.Finally,we have examined our results with the effects of dynamo magnetic fields on accreting millisecond X-ray pulsars.展开更多
We study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a Suzaku observation taken on 2012 May 23, during a less intense Type I outburst. Pulsations were clearly detected in the X-ray...We study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a Suzaku observation taken on 2012 May 23, during a less intense Type I outburst. Pulsations were clearly detected in the X-ray light curves at a barycentric period of 41.2852 s, which suggest that the pulsar is spinning-up. The pulse profiles were found to be peculiar, e.g. unlike those obtained from the earlier Suzaku observation acquired on 2007 May 14. A single-peaked narrow profile at soft X-rays (0.5-10 keV range) changed to a double-peaked broad profile in the 12-55 keV energy range and again reverted back to a smooth single-peaked profile at hard X-rays (55-70 keV range). The 1.0-100.0 keV broadband spectrum of the pulsar was found to be well described by three continuum models described as (i) a partial covering high energy cut-off power-law model, (ii) a partially absorbed power-law with high- energy exponential rolloff and (iii) a partial covering Negative and Positive power law with EXponential (NPEX) continuum model. Unlike the earlier Suzaku observation during which several low energy emission lines were detected, a weak and narrow Iron Ka emission line at 6.4 keV was only present in the pulsar spectrum during the 2012 May outburst. Non-detection of any absorption like feature in the 1-100 keV energy range supports the claim of the absence of the cyclotron resonance scattering feature in EXO 2030+375 from the earlier Suzaku observation. Pulse-phase resolved spectroscopy revealed the presence of additional dense matter causing the absence of a second peak from the soft X-ray pulse profiles. The details of the results are described in the paper.展开更多
In this paper, the propagation of x-ray bursts in the magnetoplasma of pulsar magnetosphere is discussed. The electromagnetic interaction between x-ray bursts and magnetoplasma is described as some geometry. The elect...In this paper, the propagation of x-ray bursts in the magnetoplasma of pulsar magnetosphere is discussed. The electromagnetic interaction between x-ray bursts and magnetoplasma is described as some geometry. The electromagnetic effects of surface superstrong magnetic field and dynamic effects of outflowing magnetoplasma of pulsars are treated as an optical metric. The Gordon metric is introduced to represent the gravitational metric and optical metric. So the propagation of x-ray bursts in magnetoplasma of pulsars can be described as x-ray bursts transmitting in an effective space characterized by Gordon metric. The modification of gravitational redshift, attributed to the flowing magnetoplasma of pulsars, is obtained and it is shown that the modification is of redshift and can reach the same magnitude as the gravitational redshift for ordinary pulsars.展开更多
Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10^33 - 10^37 erg s^-1 and a photon index of 1.6-2.1 in...Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10^33 - 10^37 erg s^-1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of Lx ∝ Lsd^1.31 suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of Lx ∝ Lsd^1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the Lx - Lsd reltions:Lx ∝Lsd^1.31 and Lx∝Lsd^1.5 More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.展开更多
Pulsars play a crucial astrophysical role as highly energetic compact radio, X-ray and gamma- ray sources. Our previous works show that radio pulsars identified as pulsing gamma-ray sources by the Large Area Telescope...Pulsars play a crucial astrophysical role as highly energetic compact radio, X-ray and gamma- ray sources. Our previous works show that radio pulsars identified as pulsing gamma-ray sources by the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope have high values of magnetic field near the light cylinder, two-three orders of magnitude stronger compared with the magnetic fields of radio pulsars: log Blc (G) are 3.60-3.95 and 1.75 correspondingly. Moreover, their losses of rotational energy are also three orders higher than the corresponding values for the main group of radio pulsars on average: logE(erg s-1) = 35.37-35.53 and 32.64. The correlation between gamma- ray luminosities and radio luminosities is found. It allows us to select those objects from all sets of known radio pulsars that can be detected as gamma-ray pulsars with high probability. We provide a list of such radio pulsars and propose to search for gamma emission from these objects. On the other hand, the known catalog of gamma-ray pulsars contains some sources which are not currently identified as radio pulsars. Some of them have large values of gamma-ray luminosities and according to the obtained correlation, we can expect marked radio emission from these objects. We give the list of such pulsars and expected flux densities to search for radiation at frequencies 1400 and 111 MHz.展开更多
The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the P...The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is studied, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft velocity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the Xray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.展开更多
We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate . Based on an accretion-powered model, the influences of both the magnetic field and th...We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate . Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate . The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing . A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.展开更多
The energetic bremsstrahlung photons up to 100 MeV produced in heavy ion collisions can be used as a sensitive probe for short-range correlation in atomic nuclei. The energy of the γ-rays can be measured by collectin...The energetic bremsstrahlung photons up to 100 MeV produced in heavy ion collisions can be used as a sensitive probe for short-range correlation in atomic nuclei. The energy of the γ-rays can be measured by collecting the Čerenkov light in the medium induced by the fast electrons generated in the Compton scattering or electromagnetic shower of the incident γray. Two types of detectors based on pure water and lead glass as sensitive materials were designed for this purpose. The γresponse and optical photon propagation in the detectors were simulated based on electromagnetic and optical processes in Geant4. The inherent energy resolutions of 0.022(4) + 0.51(2)∕E^(1/2)_(γ) for water and 0.0026(3) + 0.446(3)∕E^(1/2)_(γ) for lead glass were obtained. The geometry sizes of the lead glass and water were optimized to 30 cm × 30 cm × 30 cm and 60 cm × 60 cm ×120 cm, respectively, to detect high-energy γ-rays at 160 MeV. The Hough transform method was applied to reconstruct the direction of the incident γ-rays, providing the ability to experimentally distinguish the high-energy γ-rays produced in the reactions on the target from random background cosmic-ray muons.展开更多
Timing analyses of gamma-ray pulsar Geminga were made to check its rotating stability using released energetic gamma-ray experiment(EGRET)data.Phase motions of Geminga were found from EGRET data in 1995.Joint analysis...Timing analyses of gamma-ray pulsar Geminga were made to check its rotating stability using released energetic gamma-ray experiment(EGRET)data.Phase motions of Geminga were found from EGRET data in 1995.Joint analysis of parameters searching and bootstrap testing showed that the parameters are getting worse when including EGRET data in 1995.Combination of these results may indicate that a small glitch of Geminga occurred in 1995.展开更多
Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic fie...Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic field and apply it to explain pulsed γ-ray properties of the Crab pulsar. Our results show that the observed γ-ray energy-dependent light curves, which almost align with the radio light curve and phase averaged spectrum for the Crab pulsar, are reproduced well.展开更多
There is accumulating evidence for mass ejection in low-mass X-ray binaries (LMXBs) driven by radio pulsar activity during X-ray quiescence. We consider the condition for mass ejection by comparing the radiation pre...There is accumulating evidence for mass ejection in low-mass X-ray binaries (LMXBs) driven by radio pulsar activity during X-ray quiescence. We consider the condition for mass ejection by comparing the radiation pressure from a millisecond pulsar, and the gas pressure at the inner Lagrange point or at the surrounding accretion disk. We calculate the critical spin period of the pulsar below which mass ejection is allowed. Combining with the evolution of the mass transfer rate, we present constraints on the orbital periods of the systems. We show that mass ejection could happen in both wide and compact LMXBs. It may be caused by transient accretion due to thermal instability in the accretion disks in the former, and irradiation-driven mass-transfer cycles in the latter.展开更多
We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approxima...We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10-6-10-5 M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.展开更多
We analyze the time and energy dependence of the Vela pulsar’s pulse profile using 13 yr observations from the Large Area Telescope on the Fermi Gamma-ray Space Telescope.It is found that the pulse profile of the Vel...We analyze the time and energy dependence of the Vela pulsar’s pulse profile using 13 yr observations from the Large Area Telescope on the Fermi Gamma-ray Space Telescope.It is found that the pulse profile of the Vela pulsar inγ-ray changes with time.We parameterize the pulse profile and find that different shape parameters show fiuctuations rather than gradual changes with time.However,these time variation trends are insignificant due to limited statistics.The pulse profile of the Vela pulsar displays clear energy dependence inγ-ray.Different shape parameters are accurately obtained or updated,especially the phase separations among different pulses.Their energy evolution trends are quantified for the first time,which will provide restrictions on currentγ-ray emission models.For the Vela pulsar,we also find a turning point at phase.Before and after this phase,the relative intensity of the pulse profile evolves with energy with the opposite trend.展开更多
Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of e...Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J 170849-400910, 1E 1547.0- 5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Triimper et al., showing that the accretion scenario could be compatible with X- ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at -200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs.展开更多
If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for 7-ray ...If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for 7-ray emission of pulsars is suggested. It is emphasized that: (1) Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2) If the potential drop in the annular region of a pulsar is high enough (normally the case for young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3) The potential drop grows more rapidly in the annular region than in the core region. The annular acceleration process is a key process for producing the observed wide emission beams. (4) The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the 7-ray emission from the annular flow are analogous to that pre-sented in a previous work by Qiao et al., which match the observations well. (5) Since charges with different signs leave the pulsar through the annular and the core regions respectively, the current closure problem can be partially solved.展开更多
The anomalous X-ray pulsar 4U 0142+61 has been studied with obser- vations from INTEGRAL. The hard X-ray spectrum in the range 18-500 keV for 4U 0142+61 was derived using nearly nine years of INTEGRAL/IBIS data. We ...The anomalous X-ray pulsar 4U 0142+61 has been studied with obser- vations from INTEGRAL. The hard X-ray spectrum in the range 18-500 keV for 4U 0142+61 was derived using nearly nine years of INTEGRAL/IBIS data. We ob- tained the average hard X-ray spectrum of 4U 0142+61 with all available data. The spectrum of 4U 0142+61 can be fitted with a power law that includes an exponen- tial high energy cutoff. This average spectrum is well fitted by a power law with r ,~ 0.51 ± 0.11 plus a cutoff energy at 128.6 ± 17.2 keV. The hard X-ray flux of the source from 20-150 keV showed no significant variations (within 20%) from 2003- 2011. The spectral profiles have some variability over the nine years such that the photon index varies from 0.3-1.5 and the cutoff energies from 110-250 keV. The de- tection of the high energy cutoff around 130 keV shows some constraints on the radia- tion mechanisms of magnetars and possibly probes the differences between magnetar and accretion models for this special class of neutron stars. Future HXMTobservations could provide stronger constraints on the hard X-ray spectral properties of this source and other magnetar candidates.展开更多
It is generally believed that young, rapidly rotating pulsars are important sites of particle acceleration, in which protons can be accelerated to relativistic energy above the polar cap region if the magnetic moment ...It is generally believed that young, rapidly rotating pulsars are important sites of particle acceleration, in which protons can be accelerated to relativistic energy above the polar cap region if the magnetic moment is antiparallel to the spin axis (μ·Ω 〈 0). To obtain diffuse neutrinos and gamma-rays at TeV that originate in our Galaxy, we use the Monte Carlo method to generate a sample of young pulsars with ages less than 106 yr in our galaxy; the neutrinos and high-energy gamma-rays can be produced through a photomeson process with the interaction of energetic protons and soft X-ray photons (p +γ→△+→n+π+/p+π0) for a single pulsar, and these X-ray photons come from the surface of the neutron star. The results suggest that the flux of diffuse neutrinos at TeV energies is lower than the background flux, indicating they are difficult to detect using current neutrino telescopes.展开更多
基金Supported by the National Natural Science Foundation of China.
文摘We restudy the possible contribution of mature gamma-ray pulsars to cosmic ray positrons based on the new version of outer gap model. In this model, the inclination angle and average properties of the outer gap are taken into account, and more mature pulsars can have the outer gap and emit high energy photons. Half of the primary particles in the outer gaps will flow back toward the star surface and emit synchrotron photons, which can produce electron/positron pairs by the cascade of pair production. Some of these pairs will escape from the light cylinder and be accelerated to relativistic energies in the pulsar wind driven by low-frequency electromagnetic waves. Using a Monte Carlo method, we obtain a sample of mature gamma-ray pulsars and then calculate the production of the positrons from these pulsars. The observed excess of cosmic positrons can be well explained by this model.
文摘The X-ray pulsar-based navigation is a novel technology for the satellite autonomous navigation. The position and the velocity of the satellite are deterimined by using the pulse phases detected at the satellite and predicted by the pulse timing models. With the detected pulse phase, the satellite position with respect to the Earth center can be calculated along the line-of-sight to the pulsar. Using three pulsars, the satellite position in the in- ertial frame can be resolved. The extended Kalman filter (EKF) algorithm is designed to incorporate the range measurements with the satellite dynamics. Simulation verification shows that the proposed algorithm can accu- rately determine the satellite orbit, with the position error less than 100 m. Furthermore, the factors influencing the navigation performance are also discussed.
文摘In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform.
基金the Ethiopian Space Science and Technology InstituteEntoto Observatory and Research CenterAstronomy and Astrophysics Research and Development Department for supporting this research。
文摘In this paper,we have investigated accreting millisecond X-ray pulsars,which are rapidly rotating neutron stars in low-mass X-ray binaries.These systems exhibit coherent X-ray pulsations that arise when the accretion flow is magnetically channeled to the stellar surface.Here,we have developed the fundamental equations for an accretion disk around accreting millisecond X-ray pulsars in the presence of a dynamo generated magnetic field in the inner part of the disk.We have also formulated the numerical method for the structure equations in the inner region of the disk and the highest accretion rate is enough to form the inner region of the disk,which is overpowered by radiation pressure and electron scattering.Finally,we have examined our results with the effects of dynamo magnetic fields on accreting millisecond X-ray pulsars.
基金the Physical Research Laboratory is funded by the Department of Space,the Government of Indiamade use of data obtained through the HEASARC Online Service,provided by NASA/GSFC,in support of NASA High Energy Astrophysics Programs
文摘We study the timing and spectral properties of Be/X-ray binary pulsar EXO 2030+375 using a Suzaku observation taken on 2012 May 23, during a less intense Type I outburst. Pulsations were clearly detected in the X-ray light curves at a barycentric period of 41.2852 s, which suggest that the pulsar is spinning-up. The pulse profiles were found to be peculiar, e.g. unlike those obtained from the earlier Suzaku observation acquired on 2007 May 14. A single-peaked narrow profile at soft X-rays (0.5-10 keV range) changed to a double-peaked broad profile in the 12-55 keV energy range and again reverted back to a smooth single-peaked profile at hard X-rays (55-70 keV range). The 1.0-100.0 keV broadband spectrum of the pulsar was found to be well described by three continuum models described as (i) a partial covering high energy cut-off power-law model, (ii) a partially absorbed power-law with high- energy exponential rolloff and (iii) a partial covering Negative and Positive power law with EXponential (NPEX) continuum model. Unlike the earlier Suzaku observation during which several low energy emission lines were detected, a weak and narrow Iron Ka emission line at 6.4 keV was only present in the pulsar spectrum during the 2012 May outburst. Non-detection of any absorption like feature in the 1-100 keV energy range supports the claim of the absence of the cyclotron resonance scattering feature in EXO 2030+375 from the earlier Suzaku observation. Pulse-phase resolved spectroscopy revealed the presence of additional dense matter causing the absence of a second peak from the soft X-ray pulse profiles. The details of the results are described in the paper.
基金Project supported by the National Natural Science Foundation of China (Grant No 10573012)the Shanghai Leading Academic Discipline Program, China (Grant No T0104)
文摘In this paper, the propagation of x-ray bursts in the magnetoplasma of pulsar magnetosphere is discussed. The electromagnetic interaction between x-ray bursts and magnetoplasma is described as some geometry. The electromagnetic effects of surface superstrong magnetic field and dynamic effects of outflowing magnetoplasma of pulsars are treated as an optical metric. The Gordon metric is introduced to represent the gravitational metric and optical metric. So the propagation of x-ray bursts in magnetoplasma of pulsars can be described as x-ray bursts transmitting in an effective space characterized by Gordon metric. The modification of gravitational redshift, attributed to the flowing magnetoplasma of pulsars, is obtained and it is shown that the modification is of redshift and can reach the same magnitude as the gravitational redshift for ordinary pulsars.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10803009 and 10833003)
文摘Recent INTEGRAL/IBIS hard X-ray surveys have detected about 10 young pulsars. We show hard X-ray properties of these 10 young pulsars, which have a luminosity of 10^33 - 10^37 erg s^-1 and a photon index of 1.6-2.1 in the energy range of 20-100 keV. The correlation between X-ray luminosity and spin-down power of Lx ∝ Lsd^1.31 suggests that the hard X-ray emission in rotation-powered pulsars is dominated by the pulsar wind nebula (PWN) component. Assuming spectral properties are similar in 20-100keV and 2-10 keV for both the pulsar and PWN components, the hard X-ray luminosity and flux of 39 known young X-ray pulsars and 8 millisecond pulsars are obtained, and a correlation of Lx ∝ Lsd^1.5 is derived. About 20 known young X-ray pulsars and 1 millisecond pulsars could be detected with future INTEGRAL and HXMT surveys. We also carry out Monte Carlo simulations of hard X-ray pulsars in the Galaxy and the Gould Belt, assuming values for the pulsar birth rate, initial position, proper motion velocity, period, and magnetic field distribution and evolution based on observational statistics and the Lx - Lsd reltions:Lx ∝Lsd^1.31 and Lx∝Lsd^1.5 More than 40 young pulsars (mostly in the Galactic plane) could be detected after ten years of INTEGRAL surveys and the launch of HXMT. So, the young pulsars would be a significant part of the hard X-ray source population in the sky, and will contribute to unidentified hard X-ray sources in present and future hard X-ray surveys by INTEGRAL and HXMT.
基金financial support of Basic Research Program of the Presidium of the Russian Academy of Sciences"Transitional and Explosive Processes in Astrophysics(P-41)"Russian Foundation for Basic Research(grant 16–02–00954)
文摘Pulsars play a crucial astrophysical role as highly energetic compact radio, X-ray and gamma- ray sources. Our previous works show that radio pulsars identified as pulsing gamma-ray sources by the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope have high values of magnetic field near the light cylinder, two-three orders of magnitude stronger compared with the magnetic fields of radio pulsars: log Blc (G) are 3.60-3.95 and 1.75 correspondingly. Moreover, their losses of rotational energy are also three orders higher than the corresponding values for the main group of radio pulsars on average: logE(erg s-1) = 35.37-35.53 and 32.64. The correlation between gamma- ray luminosities and radio luminosities is found. It allows us to select those objects from all sets of known radio pulsars that can be detected as gamma-ray pulsars with high probability. We provide a list of such radio pulsars and propose to search for gamma emission from these objects. On the other hand, the known catalog of gamma-ray pulsars contains some sources which are not currently identified as radio pulsars. Some of them have large values of gamma-ray luminosities and according to the obtained correlation, we can expect marked radio emission from these objects. We give the list of such pulsars and expected flux densities to search for radiation at frequencies 1400 and 111 MHz.
基金supported by the National Natural Science Foundation of China (61172138)the Open Fund of Key Laboratory of Precision Navigation and Technology,National Time Service Center,CAS (2012PNTT02)
文摘The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is studied, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft velocity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the Xray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.
基金Supported by the National Natural Science Foundation of China
文摘We examine the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with the spin-down rate . Based on an accretion-powered model, the influences of both the magnetic field and the mass accretion rate on the spectral properties of AXPs are addressed. We then investigate the relation between the spectral property of AXPs and mass accretion rate . The result shows that there exists a linear correlation between the photon index and the mass accretion rate: the spectral hardness increases with increasing . A possible emission mechanism for the explanation of the spectral properties of AXPs is also discussed.
基金This work was supported by the Ministry of Science and Technology(No.2020YFE0202001)by the National Natural Science Foundation of China(Nos.11961141004 and 12205160)Tsinghua University Initiative Scientific Research Program.
文摘The energetic bremsstrahlung photons up to 100 MeV produced in heavy ion collisions can be used as a sensitive probe for short-range correlation in atomic nuclei. The energy of the γ-rays can be measured by collecting the Čerenkov light in the medium induced by the fast electrons generated in the Compton scattering or electromagnetic shower of the incident γray. Two types of detectors based on pure water and lead glass as sensitive materials were designed for this purpose. The γresponse and optical photon propagation in the detectors were simulated based on electromagnetic and optical processes in Geant4. The inherent energy resolutions of 0.022(4) + 0.51(2)∕E^(1/2)_(γ) for water and 0.0026(3) + 0.446(3)∕E^(1/2)_(γ) for lead glass were obtained. The geometry sizes of the lead glass and water were optimized to 30 cm × 30 cm × 30 cm and 60 cm × 60 cm ×120 cm, respectively, to detect high-energy γ-rays at 160 MeV. The Hough transform method was applied to reconstruct the direction of the incident γ-rays, providing the ability to experimentally distinguish the high-energy γ-rays produced in the reactions on the target from random background cosmic-ray muons.
基金Supported by the National Natural Science Foundation of China under Grant No.19673010。
文摘Timing analyses of gamma-ray pulsar Geminga were made to check its rotating stability using released energetic gamma-ray experiment(EGRET)data.Phase motions of Geminga were found from EGRET data in 1995.Joint analysis of parameters searching and bootstrap testing showed that the parameters are getting worse when including EGRET data in 1995.Combination of these results may indicate that a small glitch of Geminga occurred in 1995.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.11173020 and 11433004)the Top Talents Program of Yunnan Province
文摘Motivated by the Fermi observations of some γ-ray pulsars in which the phases of radio and γ-ray peaks are almost the same, we investigate the outer gap model in a retarded dipole with a current-induced magnetic field and apply it to explain pulsed γ-ray properties of the Crab pulsar. Our results show that the observed γ-ray energy-dependent light curves, which almost align with the radio light curve and phase averaged spectrum for the Crab pulsar, are reproduced well.
基金supported by the Natural Science Foundation of China(Grant No.10873008)the Ministry of Science and the National Basic Research Program of China(973 ProgramGrant No.2009CB824800)
文摘There is accumulating evidence for mass ejection in low-mass X-ray binaries (LMXBs) driven by radio pulsar activity during X-ray quiescence. We consider the condition for mass ejection by comparing the radiation pressure from a millisecond pulsar, and the gas pressure at the inner Lagrange point or at the surrounding accretion disk. We calculate the critical spin period of the pulsar below which mass ejection is allowed. Combining with the evolution of the mass transfer rate, we present constraints on the orbital periods of the systems. We show that mass ejection could happen in both wide and compact LMXBs. It may be caused by transient accretion due to thermal instability in the accretion disks in the former, and irradiation-driven mass-transfer cycles in the latter.
文摘We present a case study of the relevance of the radially pulsational instability of a two-temperature accretion disk around a neutron star to anomalous X-ray pulsars (AXPs). Our estimates are based on the approximation that such a neutron star disk with mass in the range of 10-6-10-5 M⊙ is formed by supernova fallback. We derive several peculiar properties of the accretion disk instability: a narrow interval of X-ray pulse periods; lower X-ray luminosities; a period derivative and an evolution time scale. All these results are in good agreement with the observations of the AXPs.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11903001,U1938109,U1838201,U1838202 and 42004004)the Key Research Foundation of Education Ministry of Anhui Province(KJ2019A0787)the Doctor Foundation of Anhui Jianzhu University 2019(2019QDZ14)。
文摘We analyze the time and energy dependence of the Vela pulsar’s pulse profile using 13 yr observations from the Large Area Telescope on the Fermi Gamma-ray Space Telescope.It is found that the pulse profile of the Vela pulsar inγ-ray changes with time.We parameterize the pulse profile and find that different shape parameters show fiuctuations rather than gradual changes with time.However,these time variation trends are insignificant due to limited statistics.The pulse profile of the Vela pulsar displays clear energy dependence inγ-ray.Different shape parameters are accurately obtained or updated,especially the phase separations among different pulses.Their energy evolution trends are quantified for the first time,which will provide restrictions on currentγ-ray emission models.For the Vela pulsar,we also find a turning point at phase.Before and after this phase,the relative intensity of the pulse profile evolves with energy with the opposite trend.
基金Supported by the National Natural Science Foundation of China
文摘Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J 170849-400910, 1E 1547.0- 5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Triimper et al., showing that the accretion scenario could be compatible with X- ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at -200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs.
基金the National Natural Science Foundation of China.
文摘If the binding energy of the pulsar's surface is not so high (the case of a neutron star), both negative and positive charges will flow out freely from the surface of the star. An annular free flow model for 7-ray emission of pulsars is suggested. It is emphasized that: (1) Two kinds of acceleration regions (annular and core) need to be taken into account. The annular acceleration region is defined by the magnetic field lines that cross the null charge surface within the light cylinder. (2) If the potential drop in the annular region of a pulsar is high enough (normally the case for young pulsars), charges in both the annular and the core regions could be accelerated and produce primary gamma-rays. Secondary pairs are generated in both regions and stream outwards to power the broadband radiations. (3) The potential drop grows more rapidly in the annular region than in the core region. The annular acceleration process is a key process for producing the observed wide emission beams. (4) The advantages of both the polar cap and outer gap models are retained in this model. The geometric properties of the 7-ray emission from the annular flow are analogous to that pre-sented in a previous work by Qiao et al., which match the observations well. (5) Since charges with different signs leave the pulsar through the annular and the core regions respectively, the current closure problem can be partially solved.
基金Supported by the National Natural Science Foundation of China
文摘The anomalous X-ray pulsar 4U 0142+61 has been studied with obser- vations from INTEGRAL. The hard X-ray spectrum in the range 18-500 keV for 4U 0142+61 was derived using nearly nine years of INTEGRAL/IBIS data. We ob- tained the average hard X-ray spectrum of 4U 0142+61 with all available data. The spectrum of 4U 0142+61 can be fitted with a power law that includes an exponen- tial high energy cutoff. This average spectrum is well fitted by a power law with r ,~ 0.51 ± 0.11 plus a cutoff energy at 128.6 ± 17.2 keV. The hard X-ray flux of the source from 20-150 keV showed no significant variations (within 20%) from 2003- 2011. The spectral profiles have some variability over the nine years such that the photon index varies from 0.3-1.5 and the cutoff energies from 110-250 keV. The de- tection of the high energy cutoff around 130 keV shows some constraints on the radia- tion mechanisms of magnetars and possibly probes the differences between magnetar and accretion models for this special class of neutron stars. Future HXMTobservations could provide stronger constraints on the hard X-ray spectral properties of this source and other magnetar candidates.
基金partially supported by the Science Research Foundation Department of Education+1 种基金 Yunnan Province (Grant No. 2012Y316)Yunnan Province under Grant No. 2010CD112
文摘It is generally believed that young, rapidly rotating pulsars are important sites of particle acceleration, in which protons can be accelerated to relativistic energy above the polar cap region if the magnetic moment is antiparallel to the spin axis (μ·Ω 〈 0). To obtain diffuse neutrinos and gamma-rays at TeV that originate in our Galaxy, we use the Monte Carlo method to generate a sample of young pulsars with ages less than 106 yr in our galaxy; the neutrinos and high-energy gamma-rays can be produced through a photomeson process with the interaction of energetic protons and soft X-ray photons (p +γ→△+→n+π+/p+π0) for a single pulsar, and these X-ray photons come from the surface of the neutron star. The results suggest that the flux of diffuse neutrinos at TeV energies is lower than the background flux, indicating they are difficult to detect using current neutrino telescopes.