This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal latt...This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.展开更多
Radiation is the direct energy source of the surface natural environment and the main driving force of climate change.It has increasingly become an important meteorological factor affecting the surface heat exchange a...Radiation is the direct energy source of the surface natural environment and the main driving force of climate change.It has increasingly become an important meteorological factor affecting the surface heat exchange and glacier mass balance,especially in the glacier changes of the Greenland Ice Sheet(Gr IS).Due to the harsh climatic conditions of Gr IS and sparse observed data,it has become an important way to obtain radiation data from reanalysis datasets.However,the applicability of these radiation data on Gr IS is uncertain and worth exploring.In this work,we evaluate five reanalysis datasets(the fifth generation of European Centre for Medium-Range Weather Forecasts(ERA5),European Centre for Medium-Range Weather Forecasts Interim Reanalysis(ERA-Interim),Japanese 55-year Reanalysis(JRA55),National Centers for Environmental Prediction Reanalysis II(NCEP2)and Modern-Era Retrospective analysis for Research and Applications,Version 2(MERRA-2))during 1997-2022 using observations from 26 Program for Monitoring the Greenland Ice Sheet(PROMICE)automatic weather stations(AWSs)and 3 K-transect AWSs on Gr IS.The conclusions are as follows:ERA5 has the best performances in downward shortwave radiation(SWD)as well as downward and upward longwave radiation(LWD and LWU),but the performance is not the best in upward shortwave radiation(SWU).Based on the radiation budget analysis with ERA5 during 1979-2022,the fluctuation of longwave radiation is greater than that of shortwave radiation.The seasonal variation of shortwave radiation is obvious,while that of longwave radiation is small.The increasing trend of longwave radiation may result from global warming,in which ice sheets absorb more solar radiation and the surface heats up significantly,emitting more LWU.展开更多
Surface solar radiation(SSR) is a key component of the energy budget of the Earth’s surface, and it varies at different spatial and temporal scales. Considerable knowledge of how and why SSR varies is crucial to a be...Surface solar radiation(SSR) is a key component of the energy budget of the Earth’s surface, and it varies at different spatial and temporal scales. Considerable knowledge of how and why SSR varies is crucial to a better understanding of climate change, which surely requires long-term measurements of high quality. The objective of this study is to introduce a value-added SSR dataset from Oct 2004 to Oct 2019 based on measurements taken at Xianghe, a suburban site in the North China Plain;two value-added products based on the 1-minute SSR measurements are developed. The first is clear sky detection by using a machine learning model. The second is cloud fraction estimation derived from an effective semiempirical method. A “brightening” of global horizontal irradiance(GHI) was revealed and found to occur under both clear and cloudy conditions. This could likely be attributed to a reduction in aerosol loading and cloud fraction. This dataset could not only improve our knowledge of the variability and trend of SSR in the North China Plain, but also be beneficial for solar energy assessment and forecasting.展开更多
Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial deliv...Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were ...High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.展开更多
BACKGROUND Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis.Postoperative adjuvant external radiation therapy(RT)has been shown to effectively prevent ...BACKGROUND Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis.Postoperative adjuvant external radiation therapy(RT)has been shown to effectively prevent recurrence after liver cancer resection.However,there are multiple RT techniques available,and the differ-ential effects of these techniques in preventing postoperative liver cancer re-currence require further investigation.AIM To assess the advantages and disadvantages of various adjuvant external RT methods after liver resection based on overall survival(OS)and disease-free survival(DFS)and to determine the optimal strategy.METHODS This study involved network meta-analyses and followed the PRISMA guidelines.The data of qualified studies published before July 10,2023,were collected from PubMed,Embase,the Web of Science,and the Cochrane Library.We included relevant studies on postoperative external beam RT after liver resection that had OS and DFS as the primary endpoints.The magnitudes of the effects were determined using risk ratios with 95%confidential intervals.The results were analyzed using R software and STATA software.RESULTS A total of 12 studies,including 1265 patients with hepatocellular carcinoma(HCC)after liver resection,were included in this study.There was no significant heterogeneity in the direct paired comparisons,and there were no significant differences in the inclusion or exclusion criteria,intervention measures,or outcome indicators,meeting the assumptions of heterogeneity and transitivity.OS analysis revealed that patients who underwent stereotactic body radiotherapy(SBRT)after resection had longer OS than those who underwent intensity modulated radiotherapy(IMRT)or 3-dimensional conformal RT(3D-CRT).DFS analysis revealed that patients who underwent 3D-CRT after resection had the longest DFS.Patients who underwent IMRT after resection had longer OS than those who underwent 3D-CRT and longer DFS than those who underwent SBRT.CONCLUSION HCC patients who undergo liver cancer resection must consider distinct advantages and disadvantages when choosing between SBRT and 3D-CRT.IMRT,a RT technique that is associated with longer OS than 3D-CRT and longer DFS than SBRT,may be a preferred option.展开更多
Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently pr...Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently proposed to reduce radiation divergence being a representative example [Opt. Lett. 45 5416(2020)]. We present a rigorous approach that allows for an analytical description of the electromagnetic processes that occur when the structure is excited by a single waveguide TM mode. In other words, the corresponding canonical waveguide diffraction problem is solved in a rigorous formulation. This is a continuation of our previous papers which considered simpler cases with a homogeneous or two-layer dielectric filling. Here we use the same analytical approach based on the Wiener–Hopf–Fock technique and deal with the more complicated case of a three-layer dielectric lining. Using the obtained rigorous solution, we discuss the possibility of manipulating the far-field radiation pattern using a third layer made of a low permittivity material.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si...This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.展开更多
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw...A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.展开更多
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
This article presents illustrations of an extended model of the electron to visualize how it spins and radiates in the external magnetic field. A time-varying magnetic field B produces a rotational induced electric fi...This article presents illustrations of an extended model of the electron to visualize how it spins and radiates in the external magnetic field. A time-varying magnetic field B produces a rotational induced electric field E which rotates (spins) the electron about its axis. In time-constant magnetic field: the electron radiates the cyclotron radiation. In time-varying magnetic field: synchrotron radiation is generated. The couplings between spin, acceleration and radiation will be discussed.展开更多
In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according ...In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to a constant and relativistic speed at a distance L from a perfectly conducting plane. The charge of the electron was represented by a spherical charge distribution located within the Compton wavelength of the electron. Subsequently, the electron is incident on the perfect conductor giving rise to transition radiation. The energy associated with the transition radiation depends on the parameter L. It was shown that an inequality satisfied by the vacuum energy density will emerge when the length L is pushed to cosmological dimensions and the product of the radiated energy, and the time duration of emission is constrained by Heisenberg’s uncertainty principle. In this paper, a similar analysis is conducted with a chain of electrons oscillating sinusoidally and located above a conducting plane. In the thought experiment presented in this paper, the behavior of the energy radiated by the chain of oscillating electrons is studied in the frequency domain as a function of the length L of the chain. It is shown that when the length L is pushed to cosmological dimensions and the energy radiated within a single burst of duration of half a period of oscillation is constrained by the fact that electromagnetic energy consists of photons, an inequality satisfied by the vacuum energy density emerges as a result. The derived inequality is given by where is the vacuum energy density. This result is consistent with the measured value of the vacuum energy density, which is 5.38 × 10<sup>-10</sup> J/m. The result obtained here is in better agreement with experimental data than the one obtained in Part I of this paper with time domain radiation.展开更多
A COnstellation of Radiation BElt Survey(CORBES)program is proposed by the Sub-Group on Radiation Belt(SGRB)of TGCSS,COSPAR.To address the open qustions about the dynamics of the Earth’s radiation belt,CORBES mission...A COnstellation of Radiation BElt Survey(CORBES)program is proposed by the Sub-Group on Radiation Belt(SGRB)of TGCSS,COSPAR.To address the open qustions about the dynamics of the Earth’s radiation belt,CORBES mission would use a constellation of small/CubeSats to take an ultra-fast survey of the Earth’s radiation belt.The concept,science objectives and preliminary technical design of CORBES are introduced.This mission is an international multilateral cooperation mission coordinated by COSPAR.The SGRB Science Activities and COSPAR HQs Coordinate Activities on CORBES are summaried.展开更多
The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of th...The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of the media, the transition radiation is mainly determined by the properties of the surface layer. The possibility of using transition radiation to study the surface of substances is discussed. In addition, due to the hard radiation present in space, this research may be important for the use of light monoatomic layers as a material for satellite antennas, “solar sails” and cover layers in a future space (interstellar) mission.展开更多
In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions ...In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions were obtained.The diameter of the projectile is 3-5 mm,the impact velocity is 3.13-6.58 km/s,and the chamber pressure is 0.56-990 Pa.The spectrum of ejected debris cloud in the 250-310 nm band were obtained using a transient spectral measurement system and a multi-channel radiometer measurement system.The test results reveal that the flash radiation intensity increases as a power function with the kinetic energy of the impact.Furthermore,the peak value of the line spectrum decreases as the chamber vacuum degree increases,while the radiation width gradually expands.The line spectrum in the spectral characterization curve corresponds to the ejected debris clouds splitting phase,which does not produce significant line spectrum during material fragmentation and is dominated by the continuum spectrum produced by blackbody radiation.There will appear one or three characteristic peaks in the flash radiation time curve,the first and second peaks correspond to the penetration phase and the third peak corresponds to the expansion phase of the ejected debris clouds on the time scale,the first and second peaks are more sensitive to the chamber vacuum degree,and when the pressure is higher than 99 Pa,the first and second characteristic peaks will disappear.The radiant heat attenuation of the flash under different impact conditions is significantly different,the attenuation exponent has a power function relationship with the impact velocity and the chamber vacuum degree,while the attenuation exponent has a linear relationship with the diameter of the projectile,the specific expression of the attenuation exponent is obtained by fitting.The findings from this research can serve as a valuable reference for remote diagnostic technologies based on flash radiation characteristics.展开更多
The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the e...The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.展开更多
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ...The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.展开更多
基金National Natural Science Foundation of China(No.12205360)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-010).
文摘This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.
基金funded by the Natural Science Foundation of China (Grant no.42171121)the open fund of Key Laboratory of Oceanic Atmospheric Chemistry and Global Change,Ministry of Natural Resources,China (Grant no.GCMAC2206)support from data availability from PROMICE and ERA5,ERA-Interim,JRA55,MERRA-2,NCEP2。
文摘Radiation is the direct energy source of the surface natural environment and the main driving force of climate change.It has increasingly become an important meteorological factor affecting the surface heat exchange and glacier mass balance,especially in the glacier changes of the Greenland Ice Sheet(Gr IS).Due to the harsh climatic conditions of Gr IS and sparse observed data,it has become an important way to obtain radiation data from reanalysis datasets.However,the applicability of these radiation data on Gr IS is uncertain and worth exploring.In this work,we evaluate five reanalysis datasets(the fifth generation of European Centre for Medium-Range Weather Forecasts(ERA5),European Centre for Medium-Range Weather Forecasts Interim Reanalysis(ERA-Interim),Japanese 55-year Reanalysis(JRA55),National Centers for Environmental Prediction Reanalysis II(NCEP2)and Modern-Era Retrospective analysis for Research and Applications,Version 2(MERRA-2))during 1997-2022 using observations from 26 Program for Monitoring the Greenland Ice Sheet(PROMICE)automatic weather stations(AWSs)and 3 K-transect AWSs on Gr IS.The conclusions are as follows:ERA5 has the best performances in downward shortwave radiation(SWD)as well as downward and upward longwave radiation(LWD and LWU),but the performance is not the best in upward shortwave radiation(SWU).Based on the radiation budget analysis with ERA5 during 1979-2022,the fluctuation of longwave radiation is greater than that of shortwave radiation.The seasonal variation of shortwave radiation is obvious,while that of longwave radiation is small.The increasing trend of longwave radiation may result from global warming,in which ice sheets absorb more solar radiation and the surface heats up significantly,emitting more LWU.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42030608, 41875183 and 41805021)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17040511)+2 种基金the National Key R&D Program of China (Grant No. 2017YFA0603504)the Sichuan Department of Science and Technology (Grant Nos. 2022NSFSC1074, and 2023NSFSC0995)the Key Grant Project of Science and Technology Innovation Ability Enhancement Program of CUIT (Grant No. KYQN202217)。
文摘Surface solar radiation(SSR) is a key component of the energy budget of the Earth’s surface, and it varies at different spatial and temporal scales. Considerable knowledge of how and why SSR varies is crucial to a better understanding of climate change, which surely requires long-term measurements of high quality. The objective of this study is to introduce a value-added SSR dataset from Oct 2004 to Oct 2019 based on measurements taken at Xianghe, a suburban site in the North China Plain;two value-added products based on the 1-minute SSR measurements are developed. The first is clear sky detection by using a machine learning model. The second is cloud fraction estimation derived from an effective semiempirical method. A “brightening” of global horizontal irradiance(GHI) was revealed and found to occur under both clear and cloudy conditions. This could likely be attributed to a reduction in aerosol loading and cloud fraction. This dataset could not only improve our knowledge of the variability and trend of SSR in the North China Plain, but also be beneficial for solar energy assessment and forecasting.
文摘Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金Research of the photoelectric properties of theκ(ε)-Ga_(2)O_(3)films was supported by the Russian Science Foundation,grant number 20-79-10043-P.Fabrication of the ultraviolet detectors based on theκ(ε)-Ga_(2)O_(3)layers was supported by the grant under the Decree of the Government of the Rus-sian Federation No.220 of 09 April 2010(Agreement No.075-15-2022-1132 of 01 July 2022)Research of the structural prop-erties of theκ(ε)-Ga_(2)O_(3)was supported by the St.Petersburg State University,grant number 94034685.
文摘High-speed solar-blind short wavelength ultraviolet radiation detectors based onκ(ε)-Ga_(2)O_(3)layers with Pt contacts were demonstrated and their properties were studied in detail.Theκ(ε)-Ga_(2)O_(3)layers were deposited by the halide vapor phase epitaxy on patterned GaN templates with sapphire substrates.The spectral dependencies of the photoelectric properties of struc-tures were analyzed in the wavelength interval 200-370 nm.The maximum photo to dark current ratio,responsivity,detectiv-ity and external quantum efficiency of structures were determined as:180.86 arb.un.,3.57 A/W,1.78×10^(12) Hz^(0.5)∙cm·W^(-1) and 2193.6%,respectively,at a wavelength of 200 nm and an applied voltage of 1 V.The enhancement of the photoresponse was caused by the decrease in the Schottky barrier at the Pt/κ(ε)-Ga_(2)O_(3)interface under ultraviolet exposure.The detectors demon-strated could functionalize in self-powered mode due to built-in electric field at the Pt/κ(ε)-Ga_(2)O_(3)interface.The responsivity and external quantum efficiency of the structures at a wavelength of 254 nm and zero applied voltage were 0.9 mA/W and 0.46%,respectively.The rise and decay times in self-powered mode did not exceed 100 ms.
基金Supported by The Science and Technology Plan Project of Guangzhou,No.202102010171National Natural Science Foundation。
文摘BACKGROUND Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis.Postoperative adjuvant external radiation therapy(RT)has been shown to effectively prevent recurrence after liver cancer resection.However,there are multiple RT techniques available,and the differ-ential effects of these techniques in preventing postoperative liver cancer re-currence require further investigation.AIM To assess the advantages and disadvantages of various adjuvant external RT methods after liver resection based on overall survival(OS)and disease-free survival(DFS)and to determine the optimal strategy.METHODS This study involved network meta-analyses and followed the PRISMA guidelines.The data of qualified studies published before July 10,2023,were collected from PubMed,Embase,the Web of Science,and the Cochrane Library.We included relevant studies on postoperative external beam RT after liver resection that had OS and DFS as the primary endpoints.The magnitudes of the effects were determined using risk ratios with 95%confidential intervals.The results were analyzed using R software and STATA software.RESULTS A total of 12 studies,including 1265 patients with hepatocellular carcinoma(HCC)after liver resection,were included in this study.There was no significant heterogeneity in the direct paired comparisons,and there were no significant differences in the inclusion or exclusion criteria,intervention measures,or outcome indicators,meeting the assumptions of heterogeneity and transitivity.OS analysis revealed that patients who underwent stereotactic body radiotherapy(SBRT)after resection had longer OS than those who underwent intensity modulated radiotherapy(IMRT)or 3-dimensional conformal RT(3D-CRT).DFS analysis revealed that patients who underwent 3D-CRT after resection had the longest DFS.Patients who underwent IMRT after resection had longer OS than those who underwent 3D-CRT and longer DFS than those who underwent SBRT.CONCLUSION HCC patients who undergo liver cancer resection must consider distinct advantages and disadvantages when choosing between SBRT and 3D-CRT.IMRT,a RT technique that is associated with longer OS than 3D-CRT and longer DFS than SBRT,may be a preferred option.
基金supported by the Russian Science Foundation(Grant No.18-72-10137)。
文摘Modern trends in beam-driven radiation sources include the interaction of Cherenkov wakefields in open-ended circular waveguides with complicated dielectric linings, with a three-layer dielectric capillary recently proposed to reduce radiation divergence being a representative example [Opt. Lett. 45 5416(2020)]. We present a rigorous approach that allows for an analytical description of the electromagnetic processes that occur when the structure is excited by a single waveguide TM mode. In other words, the corresponding canonical waveguide diffraction problem is solved in a rigorous formulation. This is a continuation of our previous papers which considered simpler cases with a homogeneous or two-layer dielectric filling. Here we use the same analytical approach based on the Wiener–Hopf–Fock technique and deal with the more complicated case of a three-layer dielectric lining. Using the obtained rigorous solution, we discuss the possibility of manipulating the far-field radiation pattern using a third layer made of a low permittivity material.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金supported by the National Key R&D Program(No.2022YFA1602201)。
文摘This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.
基金Supported By Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
文摘This article presents illustrations of an extended model of the electron to visualize how it spins and radiates in the external magnetic field. A time-varying magnetic field B produces a rotational induced electric field E which rotates (spins) the electron about its axis. In time-constant magnetic field: the electron radiates the cyclotron radiation. In time-varying magnetic field: synchrotron radiation is generated. The couplings between spin, acceleration and radiation will be discussed.
文摘In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to a constant and relativistic speed at a distance L from a perfectly conducting plane. The charge of the electron was represented by a spherical charge distribution located within the Compton wavelength of the electron. Subsequently, the electron is incident on the perfect conductor giving rise to transition radiation. The energy associated with the transition radiation depends on the parameter L. It was shown that an inequality satisfied by the vacuum energy density will emerge when the length L is pushed to cosmological dimensions and the product of the radiated energy, and the time duration of emission is constrained by Heisenberg’s uncertainty principle. In this paper, a similar analysis is conducted with a chain of electrons oscillating sinusoidally and located above a conducting plane. In the thought experiment presented in this paper, the behavior of the energy radiated by the chain of oscillating electrons is studied in the frequency domain as a function of the length L of the chain. It is shown that when the length L is pushed to cosmological dimensions and the energy radiated within a single burst of duration of half a period of oscillation is constrained by the fact that electromagnetic energy consists of photons, an inequality satisfied by the vacuum energy density emerges as a result. The derived inequality is given by where is the vacuum energy density. This result is consistent with the measured value of the vacuum energy density, which is 5.38 × 10<sup>-10</sup> J/m. The result obtained here is in better agreement with experimental data than the one obtained in Part I of this paper with time domain radiation.
文摘A COnstellation of Radiation BElt Survey(CORBES)program is proposed by the Sub-Group on Radiation Belt(SGRB)of TGCSS,COSPAR.To address the open qustions about the dynamics of the Earth’s radiation belt,CORBES mission would use a constellation of small/CubeSats to take an ultra-fast survey of the Earth’s radiation belt.The concept,science objectives and preliminary technical design of CORBES are introduced.This mission is an international multilateral cooperation mission coordinated by COSPAR.The SGRB Science Activities and COSPAR HQs Coordinate Activities on CORBES are summaried.
文摘The transition radiation of a charged particle crossing the interface of two media having a monatomic impurity layer is investigated. It is shown that at sliding angles of incidence of a particle on the boundary of the media, the transition radiation is mainly determined by the properties of the surface layer. The possibility of using transition radiation to study the surface of substances is discussed. In addition, due to the hard radiation present in space, this research may be important for the use of light monoatomic layers as a material for satellite antennas, “solar sails” and cover layers in a future space (interstellar) mission.
基金supported by the National Natural Science Foundation of China (Grant No.11672278)。
文摘In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions were obtained.The diameter of the projectile is 3-5 mm,the impact velocity is 3.13-6.58 km/s,and the chamber pressure is 0.56-990 Pa.The spectrum of ejected debris cloud in the 250-310 nm band were obtained using a transient spectral measurement system and a multi-channel radiometer measurement system.The test results reveal that the flash radiation intensity increases as a power function with the kinetic energy of the impact.Furthermore,the peak value of the line spectrum decreases as the chamber vacuum degree increases,while the radiation width gradually expands.The line spectrum in the spectral characterization curve corresponds to the ejected debris clouds splitting phase,which does not produce significant line spectrum during material fragmentation and is dominated by the continuum spectrum produced by blackbody radiation.There will appear one or three characteristic peaks in the flash radiation time curve,the first and second peaks correspond to the penetration phase and the third peak corresponds to the expansion phase of the ejected debris clouds on the time scale,the first and second peaks are more sensitive to the chamber vacuum degree,and when the pressure is higher than 99 Pa,the first and second characteristic peaks will disappear.The radiant heat attenuation of the flash under different impact conditions is significantly different,the attenuation exponent has a power function relationship with the impact velocity and the chamber vacuum degree,while the attenuation exponent has a linear relationship with the diameter of the projectile,the specific expression of the attenuation exponent is obtained by fitting.The findings from this research can serve as a valuable reference for remote diagnostic technologies based on flash radiation characteristics.
基金This project is partly funded by Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.“Research on active Security Defense Strategies for Distribution Internet of Things Based on Trustworthy,under Grant No.5211DS22000G”.
文摘The application of Intelligent Internet of Things(IIoT)in constructing distribution station areas strongly supports platform transformation,upgrade,and intelligent integration.The sensing layer of IIoT comprises the edge convergence layer and the end sensing layer,with the former using intelligent fusion terminals for real-time data collection and processing.However,the influx of multiple low-voltage in the smart grid raises higher demands for the performance,energy efficiency,and response speed of the substation fusion terminals.Simultaneously,it brings significant security risks to the entire distribution substation,posing a major challenge to the smart grid.In response to these challenges,a proposed dynamic and energy-efficient trust measurement scheme for smart grids aims to address these issues.The scheme begins by establishing a hierarchical trust measurement model,elucidating the trust relationships among smart IoT terminals.It then incorporates multidimensional measurement factors,encompassing static environmental factors,dynamic behaviors,and energy states.This comprehensive approach reduces the impact of subjective factors on trust measurements.Additionally,the scheme incorporates a detection process designed for identifying malicious low-voltage end sensing units,ensuring the prompt identification and elimination of any malicious terminals.This,in turn,enhances the security and reliability of the smart grid environment.The effectiveness of the proposed scheme in pinpointing malicious nodes has been demonstrated through simulation experiments.Notably,the scheme outperforms established trust metric models in terms of energy efficiency,showcasing its significant contribution to the field.
基金supported by the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds for the Central Universities(No.2021ZDPY0211)+2 种基金the Graduate Innovation Program of China University of Mining and Technology(No.2023WLKXJ046)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2811)the Project of Liaoning Provincial Department of Education(No.JYTMS20231458).
文摘The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.