The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource produ...The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.展开更多
Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon...Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.展开更多
目的:探讨Delta大通道内镜辅助下后路椎管减压椎间植骨融合术治疗退变性腰椎疾病的效果。方法:回顾性分析2021年9月~2022年9月我院收治的80例退变性腰椎疾病患者的病历资料,根据患者治疗方式分为观察组(38例,男17例,女21例,年龄61.0...目的:探讨Delta大通道内镜辅助下后路椎管减压椎间植骨融合术治疗退变性腰椎疾病的效果。方法:回顾性分析2021年9月~2022年9月我院收治的80例退变性腰椎疾病患者的病历资料,根据患者治疗方式分为观察组(38例,男17例,女21例,年龄61.0±4.9岁)和对照组(42例,男20例,女22例,年龄60.5±5.4岁),观察组患者采取Delta大通道内镜下Endo-PLIF治疗,对照组采取开放后路腰椎椎间融合术治疗,记录两组患者术中出血量、术后引流量、手术时间、手术切口长度、住院时间,比较患者并发症发生情况。于术前、术后1周、1个月、3个月、6个月使用视觉模拟量表(visual analogue scale,VAS)评分评估患者腰痛情况,并采用Oswestry功能障碍指数(Oswestry disability index,ODI)评估患者腰椎功能;使用改良Macnab标准对患者进行疗效评估。根据患者术后1年随访时的腰椎影像学复查结果,使用Bridwell椎间融合标准对患者手术节段融合情况进行评估。结果:观察组患者的术中出血量及术后引流量分别低于对照组(88.46±10.98mL vs 112.99±12.01mL、159.73±18.42mL vs 201.36±23.06mL,P<0.05),手术切口及住院时间分别短于对照组(1.54±0.36cm vs 5.43±1.01cm、6.79±1.22d vs 8.03±1.43d,P<0.05),手术时间长于对照组(162.33±19.57min vs 126.87±23.15min,P<0.05)。80例患者术后均获随访,随访时间15~40个月(19.0±6.3个月)。观察组患者术后1周、术后1个月的VAS评分分别为2.46±0.51分、1.21±0.38分,ODI分别为(17.84±4.15)%、(10.69±1.88)%,均低于对照组[VAS评分分别为3.68±0.62分、2.01±0.41分,ODI分别为(21.33±3.48)%、(12.33±2.17)%,均P<0.05],两组患者术后3个月、术后6个月的VAS评分比较无统计学差异(P>0.05)。观察组治疗优良率为92.11%,与对照组的85.71%比较无统计学意义(P=0.487)。两组患者融合分级比较,差异无统计学意义(Z=0.487,P=0.624)。观察组术后并发症发生率为5.26%,与对照组的9.52%比较无统计学差异(P=0.678)。结论:Delta大通道内镜辅助下后路椎管减压椎间植骨融合术治疗退变性腰椎疾病效果良好,可以减少术中出血量,缩短手术切口和住院时间,更快改善患者术后短期内疼痛、腰椎功能,安全性较好。展开更多
Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into t...Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.展开更多
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-s...Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.展开更多
CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate ...CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.展开更多
The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic m...The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.展开更多
Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-Apr...Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.展开更多
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
基金Sponsored by Talent Project of Tongling University(2021tlxyrc27).
文摘The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.
文摘Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.
文摘目的:探讨Delta大通道内镜辅助下后路椎管减压椎间植骨融合术治疗退变性腰椎疾病的效果。方法:回顾性分析2021年9月~2022年9月我院收治的80例退变性腰椎疾病患者的病历资料,根据患者治疗方式分为观察组(38例,男17例,女21例,年龄61.0±4.9岁)和对照组(42例,男20例,女22例,年龄60.5±5.4岁),观察组患者采取Delta大通道内镜下Endo-PLIF治疗,对照组采取开放后路腰椎椎间融合术治疗,记录两组患者术中出血量、术后引流量、手术时间、手术切口长度、住院时间,比较患者并发症发生情况。于术前、术后1周、1个月、3个月、6个月使用视觉模拟量表(visual analogue scale,VAS)评分评估患者腰痛情况,并采用Oswestry功能障碍指数(Oswestry disability index,ODI)评估患者腰椎功能;使用改良Macnab标准对患者进行疗效评估。根据患者术后1年随访时的腰椎影像学复查结果,使用Bridwell椎间融合标准对患者手术节段融合情况进行评估。结果:观察组患者的术中出血量及术后引流量分别低于对照组(88.46±10.98mL vs 112.99±12.01mL、159.73±18.42mL vs 201.36±23.06mL,P<0.05),手术切口及住院时间分别短于对照组(1.54±0.36cm vs 5.43±1.01cm、6.79±1.22d vs 8.03±1.43d,P<0.05),手术时间长于对照组(162.33±19.57min vs 126.87±23.15min,P<0.05)。80例患者术后均获随访,随访时间15~40个月(19.0±6.3个月)。观察组患者术后1周、术后1个月的VAS评分分别为2.46±0.51分、1.21±0.38分,ODI分别为(17.84±4.15)%、(10.69±1.88)%,均低于对照组[VAS评分分别为3.68±0.62分、2.01±0.41分,ODI分别为(21.33±3.48)%、(12.33±2.17)%,均P<0.05],两组患者术后3个月、术后6个月的VAS评分比较无统计学差异(P>0.05)。观察组治疗优良率为92.11%,与对照组的85.71%比较无统计学意义(P=0.487)。两组患者融合分级比较,差异无统计学意义(Z=0.487,P=0.624)。观察组术后并发症发生率为5.26%,与对照组的9.52%比较无统计学差异(P=0.678)。结论:Delta大通道内镜辅助下后路椎管减压椎间植骨融合术治疗退变性腰椎疾病效果良好,可以减少术中出血量,缩短手术切口和住院时间,更快改善患者术后短期内疼痛、腰椎功能,安全性较好。
基金funded by National Natural Science Foundation of China(Grants No.42171210,42371194)Major Project of Key Research Bases for Humanities and Social Sciences Funded by the Ministry of Education of China(Grant No.22JJD790015).
文摘Regional inequality significantly influences sustainable development and human well-being.In China,there exists pronounced regional disparities in economic and digital advancements;however,scant research delves into the interplay between them.By analyzing the economic development and digitalization gaps at regional and city levels in China,extending the original Cobb-Douglas production function,this study aims to evaluate the impact of digitalization on China's regional inequality using seemingly unrelated regression.The results indicate a greater emphasis on digital inequality compared to economic disparity,with variable coefficients of 0.59 for GDP per capita and 0.92 for the digitalization index over the past four years.However,GDP per capita demonstrates higher spatial concentration than digitalization.Notably,both disparities have shown a gradual reduction in recent years.The southeastern region of the Hu Huanyong Line exhibits superior levels and rates of economic and digital advancement in contrast to the northwestern region.While digitalization propels economic growth,it yields a nuanced impact on achieving balanced regional development,encompassing both positive and negative facets.Our study highlights that the marginal utility of advancing digitalization is more pronounced in less developed regions,but only if the government invests in the digital infrastructure and education in these areas.This study's methodology can be utilized for subsequent research,and our findings hold the potential to the government's regional investment and policy-making.
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
基金financially supported by the National Natural Science Foundation of China(31972149)funding support from the MacDiarmid Institute for Advanced Materials and Nanotechnologythe Dodd-Walls Centre for Photonic and Quantum Technologies。
文摘Herein,a novel interference-free surface-enhanced Raman spectroscopy(SERS)strategy based on magnetic nanoparticles(MNPs)and aptamer-driven assemblies was proposed for the ultrasensitive detection of histamine.A core-satellite SERS aptasensor was constructed by combining aptamer-decorated Fe_(3)O_(4)@Au MNPs(as the recognize probe for histamine)and complementary DNA-modified silver nanoparticles carrying 4-mercaptobenzonitrile(4-MBN)(Ag@4-MBN@Ag-c-DNA)as the SERS signal probe for the indirect detection of histamine.Under an applied magnetic field in the absence of histamine,the assembly gave an intense Raman signal at“Raman biological-silent”region due to 4-MBN.In the presence of histamine,the Ag@4-MBN@Ag-c-DNA SERS-tag was released from the Fe_(3)O_(4)@Au MNPs,thus decreasing the SERS signal.Under optimal conditions,an ultra-low limit of detection of 0.65×10^(-3)ng/mL and a linear range 10^(-2)-10^5 ng/mL on the SERS aptasensor were obtained.The histamine content in four food samples were analyzed using the SERS aptasensor,with the results consistent with those determined by high performance liquid chromatography.The present work highlights the merits of indirect strategies for the ultrasensitive and highly selective SERS detection of small biological molecules in complex matrices.
基金supported by the General Project of Top-Design of Multi-Scale Nature-Social ModelsData Support and Decision Support System for NSFC Carbon Neutrality Major Project(42341202)the Basic Scientific Research Fund of the Chinese Academy of Meteorological Sciences(2021Z014)。
文摘CO_(2)is one of the most important greenhouse gases(GHGs)in the earth’s atmosphere.Since the industrial era,anthropogenic activities have emitted excessive quantities of GHGs into the atmosphere,resulting in climate warming since the 1950s and leading to an increased frequency of extreme weather and climate events.In 2020,China committed to striving for carbon neutrality by 2060.This commitment and China’s consequent actions will result in significant changes in global and regional anthropogenic carbon emissions and therefore require timely,comprehensive,and objective monitoring and verification support(MVS)systems.The MVS approach relies on the top-down assimilation and inversion of atmospheric CO_(2)concentrations,as recommended by the Intergovernmental Panel on Climate Change(IPCC)Inventory Guidelines in 2019.However,the regional high-resolution assimilation and inversion method is still in its initial stage of development.Here,we have constructed an inverse system for carbon sources and sinks at the kilometer level by coupling proper orthogonal decomposition(POD)with four-dimensional variational(4DVar)data assimilation based on the weather research and forecasting-greenhouse gas(WRF-GHG)model.Our China Carbon Monito ring and Verification Support at the Regional level(CCMVS-R)system can continuously assimilate information on atmospheric CO_(2)and other related information and realize the inversion of regional and local anthropogenic carbon emissions and natural terrestrial ecosystem carbon exchange.Atmospheric CO_(2)data were collected from six ground-based monito ring sites in Shanxi Province,China to verify the inversion effect of regio nal anthropogenic carbon emissions by setting ideal and real experiments using a two-layer nesting method(at 27 and 9 km).The uncertainty of the simulated atmospheric CO_(2)decreased significantly,with a root-mean-square error of CO_(2)concentration values between the ideal value and the simulated after assimilation was close to 0.The total anthropogenic carbon emissions in Shanxi Province in 2019 from the assimilated inversions were approximately 28.6%(17%-38%)higher than the mean of five emission inventories using the bottomup method,showing that the top-down CCMVS-R system can obtain more comprehensive information on anthropogenic carbon emissions.
基金supported by the Fundamental and Commonwealth Geological Survey of Oil and Gas of China(Grant No.DD 20221662)the National Natural Science Foundation of China(NSFC)Program(Grant No.42302124).
文摘The Late Permian was marked by a series of important geological events and widespread organic-rich black shale depositions,acting as important unconventional hydrocarbon source rocks.However,the mechanism of organic matter(OM)enrichment throughout this period is still controversial.Based on geochemical data,the marine redox conditions,paleogeographic and hydrographic environment,primary productivity,volcanism,and terrigenous input during the Late Permian in the Lower Yangtze region have been studied from the Putaoling section,Chaohu,to provide new insights into OM accumulation.Five Phases are distinguished based on the TOC and environmental variations.In Phase I,anoxic conditions driven by water restriction enhanced OM preservation.In Phase II,euxinic and cycling hydrological environments were the two most substantial controlling factors for the massive OM deposition.During Phase III,intensified terrestrial input potentially diluted the OM in sediment and the presence of oxygen in bottom water weakened the preservation condition.Phase IV was characterized by a relatively higher abundance of mercury(Hg)and TOC(peak at 16.98 wt%),indicating that enhanced volcanism potentially stimulated higher productivity and a euxinic environment.In Phase V,extremely lean OM was preserved as a result of terrestrial dilutions and decreasing primary productivity.Phases I,II and IV are characterized as the most prominent OM-rich zones due to the effective interactions of the controlling factors,namely paleogeographic,hydrographic environment,volcanism,and redox conditions.
基金jointly funded by the State Key Program of the National Natural Science Foundation of China(No.42130605)the Major Program of the National Natural Science Foundation of China(No.72293604)+5 种基金the Youth Innovative Talents Program of Guangdong Colleges and Universities(No.2022KQNCX026)the Natural Science Foundation of Shandong(No.ZR2022MD038)the Project of Enhancing School with Innovation of Guangdong Ocean University(No.230419106)the State Key Program of the National Natural Science Foundation of China(No.42130605)the National Natural Science Foundation of China(Nos.42275001,42276019,42205014,and 42275017)the Guangdong Ocean University Ph.D.Scientific Research Program(No.R19045).
文摘Explosive cyclones(ECs)occur frequently over the Kuroshio/Kuroshio Extension region.The most rapidly intensified EC over the Kuroshio/Kuroshio Extension region during the 42 years(1979-2020)of cold seasons(October-April)was studied to reveal the variations of the key factors at different explosive-developing stages.This EC had weak low-level baroclinicity,mid-level cyclonic-vorticity advection,and strong low-level water vapor convergence at the initial explosive-developing stage.The low-level baroclinicity and mid-level cyclonic-vorticity advection increased substantially during the maximum-deepening-rate stage.The diagnostic analyses using the Zwack-Okossi equation showed that diabatic heating was the main contributor to the initial rapid intensification of this EC.The cyclonic-vorticity advection and warm-air advection enhanced rapidly in the middle and upper troposphere and contributed to the maximum rapid intensification,whereas the diabatic heating weakened slightly in the mid-low troposphere.The relative contribution of the diabatic heating decreased from the initial explosive-developing stage to the maximum-deepening-rate stage due to the enhancement of other factors(the cyclonic-vorticity advection and warm-air advection).Furthermore,the physical factors contributing to this EC varied with the explosive-developing stage.The non-key factors at the initial explosive-developing stage need attention to forecast the rapid intensification.
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.