期刊文献+
共找到155,162篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental and numerical study on protective effect of RC blast wall against air shock wave
1
作者 Xin-zhe Nian Quan-min Xie +2 位作者 Xin-li Kong Ying-kang Yao Kui Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期567-579,共13页
Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in diff... Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in different regions.The above experiments were numerically simulated,and the simulated shock wave overpressure waveforms were compared with that tested and given by CONWEP program.The results show that the numerically simulated waveform is slightly different from the test waveform,but similar to CONWEP waveform.Through dimensional analysis and numerical simulation under different working conditions,the equation for the attenuation rate of the diffraction overpressure behind the blast wall was obtained.According to the corresponding standards,the degree of casualties and the damage degree of the brick concrete building at a certain distance behind the wall can be determined when parameters are set.The above results can provide a reference for the design and construction of the reinforced concrete blast wall. 展开更多
关键词 Blast wall shock wave DIFFRACTION OVERPRESSURE Protection
下载PDF
Propagation Properties of Shock Waves in Polyurethane Foam based on Atomistic Simulations
2
作者 Zhiqiang Hu Jianli Shao +2 位作者 Shiyu Jia Weidong Song Cheng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros... Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock. 展开更多
关键词 Polyurethane foam shock wave ATTENUATION Atomistic simulation
下载PDF
Blast waveform tailoring using controlled venting in blast simulators and shock tubes
3
作者 Edward Chern Jinn Gan Alex Remennikov David Ritzel 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期14-26,共13页
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constra... A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied. 展开更多
关键词 Advanced blast simulator shock wave propagation Far-field explosion Blast loads Blast waves Computational fluid dynamics
下载PDF
Experimental investigation on weak shock wave mitigation characteristics of flexible polyurethane foam and polyurea
4
作者 Shiyu Jia Cheng Wang +2 位作者 Wenlong Xu Dong Ma Fangfang Qi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期179-191,共13页
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse... In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density. 展开更多
关键词 Free-field explosion Weak shock wave mitigation POLYUREA Polyurethane foam Multi-layered composites
下载PDF
Research advances in enhanced coal seam gas extraction by controllable shock wave fracturing
5
作者 Chaojun Fan Hao Sun +6 位作者 Sheng Li Lei Yang Bin Xiao Zhenhua Yang Mingkun Luo Xiaofeng Jiang Lijun Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期1-31,共31页
With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ... With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated. 展开更多
关键词 Controllable shock wave Permeability enhancement Gas extraction Basic principle Experimental test Mathematical models On-site test
下载PDF
Numerical and experimental investigation into the evolution of the shock wave when a muzzle jet impacts a constrained moving body
6
作者 Zijie Li Hao Wang +1 位作者 Changshun Chen Kun Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期317-326,共10页
The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of th... The gun-track launch system is a new special launch device that connects the track outside the muzzle.Because it is constrained by the track,the characteristics of development of the muzzle jet differ from those of the traditional muzzle jet.Specifically,it changes from freely developing to doing so in a constrained manner,where this results in an asymmetric direction of flow as well as spatio-temporal coupling-induced interference between various shock waves and the formation of vortices.In this background,the authors of this article formulate and consider the development and characteristics of evolution of the muzzle jet as it impacts a constrained moving body.We designed simulations to test the gun-track launch system,and established a numerical model based on the dynamic grid method to explore the development and characteristics of propagation of disturbances when the muzzle jet impacted a constrained moving body.We also considered models without a constrained track for the sake of comparison.The results showed that the muzzle jet assumed a circumferential asymmetric shape,and tended to develop in the area above the muzzle.Because the test platform was close to the ground,the muzzle jet was subjected to reflections from it that enhanced the development and evolution of various forms of shock waves and vortices in the muzzle jet to exacerbate its rate of distortion and asymmetric characteristics.This in turn led to significant differences in the changes in pressure at symmetric points that would otherwise have been identical.The results of a comparative analysis showed that the constrained track could hinder the influence of reflections from the ground on the muzzle jet to some extent,and could reduce the velocity of the shock waves inducing the motion of the muzzle as well as the Mach number of the moving body.The work here provides a theoretical basis and the requisite technical support for applications of the gun-track launch system.It also sheds light on the technical bottlenecks that need to be considered to recover high-value warheads. 展开更多
关键词 shock wave/vortex interference Muzzle jet Constrained boundary Dynamic grid
下载PDF
Extracorporeal shock wave therapy in treating ischial non-union following Bernese periacetabular osteotomy:A case report
7
作者 Jun Yan Jun-Yu Zhu +6 位作者 Fei-Fei Zhao Jian Xiao Hao Li Ming-Xin Wang Jing Guo Liang Cui Geng-Yan Xing 《World Journal of Orthopedics》 2024年第10期991-996,共6页
BACKGROUND Extracorporeal shock wave therapy(ESWT)is increasingly being recognized as an advantageous alternative for treating non-union due to its efficacy and minimal associated complications.Non-union following Ber... BACKGROUND Extracorporeal shock wave therapy(ESWT)is increasingly being recognized as an advantageous alternative for treating non-union due to its efficacy and minimal associated complications.Non-union following Bernese periacetabular osteotomy(PAO)is particularly challenging,with a reported 55%delayed union and 8%non-union.Herein,we highlight a unique case of ischial non-union post-PAO treated successfully with a structured ESWT regimen.CASE SUMMARY A 50-year-old patient,diagnosed with left ischial non-union following the PAO,underwent six cycles of ESWT treatment across ten months.Each cycle,spaced four weeks apart,consisted of five consecutive ESWT sessions without anesthesia.Regular X-ray follow-ups showed progressive disappearance of the fracture line and fracture union.The patient ultimately achieved a satisfactory asymptomatic recovery and bone union.CONCLUSION The results from this case suggest that this ESWT regimen can be a promising non-invasive treatment strategy for non-union following PAO. 展开更多
关键词 Ischial non-union Extracorporeal shock wave therapy NON-UNION Bernese periacetabular osteotomy Case report
下载PDF
Demonstrating grating-based phase-contrast imaging of laser-driven shock waves
8
作者 Leonard Wegert Stephan Schreiner +16 位作者 Constantin Rauch Bruno Albertazzi Paulina Bleuel Eric Frojdh Michel Koenig Veronika Ludwig Artem SMartynenko Pascal Meyer Aldo Mozzanica Michael Müller Paul Neumayer Markus Schneider Angelos Triantafyllidis Bernhard Zielbauer Gisela Anton Thilo Michel Stefan Funk 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期90-97,共8页
Single-shot X-ray phase-contrast imaging is used to take high-resolution images of laser-driven strong shock waves.Employing a two-grating Talbot interferometer,we successfully acquire standard absorption,differential... Single-shot X-ray phase-contrast imaging is used to take high-resolution images of laser-driven strong shock waves.Employing a two-grating Talbot interferometer,we successfully acquire standard absorption,differential phase-contrast,and dark-field images of the shocked target.Good agreement is demonstrated between experimental data and the results of two-dimensional radiation hydrodynamics simulations of the laser-plasma interaction.The main sources of image noise are identified through a thorough assessment of the interferometer’s performance.The acquired images demonstrate that grating-based phase-contrast imaging is a powerful diagnostic tool for high-energy-density science.In addition,we make a novel attempt at using the dark-field image as a signal modality of Talbot interferometry to identify the microstructure of a foam target. 展开更多
关键词 INTERACTION shock PHASE
下载PDF
Impacts of Comorbidity and Mental Shock on Organic Micropollutants in Surface Water During and After the First Wave of COVID-19 Pandemic in Wuhan (2019–2021), China
9
作者 Jian Zhao Jin Kang +10 位作者 Xiaofeng Cao Rui Bian Gang Liu Shengchao Hu Xinghua Wu Chong Li Dianchang Wang Weixiao Qi Cunrui Huang Huijuan Liu Jiuhui Qu 《Engineering》 SCIE EI CAS CSCD 2024年第6期40-48,共9页
The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,wh... The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,while comorbidities(e.g.,hypertension and diabetes)and mental shock(e.g.,insomnia and anxiety)are nonnegligible.Nevertheless,little is known about the long-term impacts of comorbidities and mental shock on organic micropollutants(OMPs)in surface waters.Herein,we monitored 114 OMPs in surface water and wastewater treatment plants(WWTPs)in Wuhan,China,between 2019 and 2021.The pandemic-induced OMP pollution in surface water was confirmed by significant increases in 26 OMP concentrations.Significant increases in four antihypertensives and one diabetic drug suggest that the treatment of comorbidities may induce OMP pollution.Notably,cotinine(a metabolite of nicotine)increased 155 times to 187 ngL1,which might be associated with increased smoking.Additionally,the increases in zolpidem and sulpiride might be the result of worsened insomnia and depression.Hence,it is reasonable to note that mental-health protecting drugs/behavior also contributed to OMP pollution.Among the observed OMPs,telmisartan,lopinavir,and ritonavir were associated with significantly higher ecological risks because of their limited WWTP-removal rate and high ecotoxicity.This study provides new insights into the effects of comorbidities and mental shock on OMPs in surface water during a pandemic and highlights the need to monitor the fate of related pharmaceuticals in the aquatic environment and to improve their removal efficiencies in WWTPs。 展开更多
关键词 Coronavirus disease 2019 COMORBIDITIES Mental shock MICROPOLLUTANT Surface water
下载PDF
High-Order DG Schemes with Subcell Limiting Strategies for Simulations of Shocks,Vortices and Sound Waves in Materials Science Problems
10
作者 Zhenhua Jiang Xi Deng +3 位作者 Xin Zhang Chao Yan Feng Xiao Jian Yu 《Fluid Dynamics & Materials Processing》 EI 2024年第10期2183-2204,共22页
Shock waves,characterized by abrupt changes in pressure,temperature,and density,play a significant role in various materials science processes involving fluids.These high-energy phenomena are utilized across multiple ... Shock waves,characterized by abrupt changes in pressure,temperature,and density,play a significant role in various materials science processes involving fluids.These high-energy phenomena are utilized across multiple fields and applications to achieve unique material properties and facilitate advanced manufacturing techniques.Accurate simulations of these phenomena require numerical schemes that can represent shock waves without spurious oscillations and simultaneously capture acoustic waves for a wide range of wavelength scales.This work suggests a high-order discontinuous Galerkin(DG)method with a finite volume(FV)subcell limiting strategies to achieve better subcell resolution and lower numerical diffusion properties.By switching to the FV discretization on an embedded sub-cell grid,the method displays advantages with respect to both DG accuracy and FV shock-capturing ability.The FV scheme utilizes a class of high-fidelity schemes that are built upon the boundary variation diminishing(BVD)reconstruction paradigm.The method is therefore able to resolve discontinuities and multi-scale structures on the subcell level,while preserving the favorable properties of the high-order DG scheme.We have tested the present DG method up to the 6th-order accuracy for both smooth and discontinuous noise problems. 展开更多
关键词 Discontinuous Galerkin finite volume subcell limiting shock associated noise computational aeroacoustics
下载PDF
Macro Meso Response and Stress Wave Propagation Characteristics of MCT High-Voltage Switch Under Shock load
11
作者 Yuyang Guo Chuang Chen +1 位作者 Ruizhi Wang Enling Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期317-335,共19页
In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,th... In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device. 展开更多
关键词 MCT Impact load Failure analysis Stress wave Numerical simulation
下载PDF
Evaluation of the Effectiveness and Efficiency of Extracorporeal Shock Wave Combined with Rehabilitation Training in the Treatment of Muscle Articulation Chronic Pain
12
作者 Dongchou Han Qiya Feng +3 位作者 Yingmei Fu Feijian Zhang Dazhen Chen Junmei Wu 《Journal of Clinical and Nursing Research》 2024年第4期110-115,共6页
Objective: To analyze the effect of combined extracorporeal shock wave and rehabilitation training treatment in patients with muscle articulation chronic pain (MACP). Methods: Ninety-seven MACP patients admitted to ou... Objective: To analyze the effect of combined extracorporeal shock wave and rehabilitation training treatment in patients with muscle articulation chronic pain (MACP). Methods: Ninety-seven MACP patients admitted to our hospital from September 2021 to September 2023 were randomly selected and were divided into Group A (control group, 46 cases, rehabilitation training treatment) and Group B (observation group, 51 cases, extracorporeal shock wave with rehabilitation training treatment), and outcomes of the two groups were compared. Results: The treatment efficiency, post-treatment clinical indexes (upper and lower limb function scores, activities of daily living (ADL) scores, visual analog scale (VAS) scores), and short-form 36 (SF-36) scores of Group B were better than those of Group A (P < 0.05). Conclusion: Combined extracorporeal shock wave and rehabilitation training treatment for MACP patients improved their limb function, daily activities, quality of life, and reduced pain. 展开更多
关键词 Extracorporeal shock wave Rehabilitation training Musculoskeletal joint Chronic pain Treatment effect
下载PDF
Research on the distribution characteristics of explosive shock waves at different altitudes 被引量:6
13
作者 Liang-quan Wang De-ren Kong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期340-348,共9页
There are great differences in the distribution characteristics of shock waves produced by ammunition explosions at different altitudes.At present,there are many studies on plain explosion shock waves,but there are fe... There are great differences in the distribution characteristics of shock waves produced by ammunition explosions at different altitudes.At present,there are many studies on plain explosion shock waves,but there are few studies on the distribution characteristics of plateau explosion shock waves,and there is still a lack of complete analysis and evaluation methods.This paper compares and analyzes shock wave overpressure data at different altitudes,obtains the attenuation effect of different altitudes on the shock wave propagation process and proposes a calculation formula for shock wave overpressure considering the effect of altitude.The data analysis results show that at the same TNT equivalent and the same distance from the measuring point,the shock wave overpressure at high altitude is lower than that at low altitude.With the increase in the explosion center distance of the measuring point,the peak attenuation rate of the shock wave overpressure at high altitudes is smaller than that at low altitudes,and the peak attenuation rate of the shock wave overpressure at high altitudes gradually intensifies with increasing proportional distance.The average error between the shock wave overpressure and measured shock wave overpressure in a high-altitude environment obtained by using the above calculation formula is 11.1389%.Therefore,this method can effectively predict explosion shock wave overpressure in plateau environments and provides an effective calculation method for practical engineering tests. 展开更多
关键词 shock wave overpressure calculation Pressure attenuation law Altitude correction factor Engineering numerical model
下载PDF
Direct imaging of shock wave splitting in diamond at Mbar pressure 被引量:2
14
作者 Sergey Makarov Sergey Dyachkov +21 位作者 Tatiana Pikuz Kento Katagiri Hirotaka Nakamura Vasily Zhakhovsky Nail Inogamov Victor Khokhlov Artem Martynenko Bruno Albertazzi Gabriel Rigon Paul Mabey Nicholas JHartley Yuichi Inubushi Kohei Miyanishi Keiichi Sueda Tadashi Togashi Makina Yabashi Toshinori Yabuuchi Takuo Okuchi Ryosuke Kodama Sergey Pikuz Michel Koenig Norimasa Ozaki 《Matter and Radiation at Extremes》 SCIE EI CSCD 2023年第6期90-100,共11页
Understanding the behavior of matter at extreme pressures of the order of a megabar(Mbar)is essential to gain insight into various physical phenomena at macroscales—the formation of planets,young stars,and the cores ... Understanding the behavior of matter at extreme pressures of the order of a megabar(Mbar)is essential to gain insight into various physical phenomena at macroscales—the formation of planets,young stars,and the cores of super-Earths,and at microscales—damage to ceramic materials and high-pressure plastic transformation and phase transitions in solids.Under dynamic compression of solids up to Mbar pressures,even a solid with high strength exhibits plastic properties,causing the induced shock wave to split in two:an elastic precursor and a plastic shock wave.This phenomenon is described by theoretical models based on indirect measurements of material response.The advent of x-ray free-electron lasers(XFELs)has made it possible to use their ultrashort pulses for direct observations of the propagation of shock waves in solid materials by the method of phase-contrast radiography.However,there is still a lack of comprehensive data for verification of theoretical models of different solids.Here,we present the results of an experiment in which the evolution of the coupled elastic-plastic wave structure in diamond was directly observed and studied with submicrometer spatial resolution,using the unique capabilities of the x-ray free-electron laser(XFEL).The direct measurements allowed,for the first time,the fitting and validation of the 2D failure model for diamond in the range of several Mbar.Our experimental approach opens new possibilities for the direct verification and construction of equations of state of matter in the ultra-high-stress range,which are relevant to solving a variety of problems in high-energy-density physics. 展开更多
关键词 shock wave SOLIDS
下载PDF
THE SHOCK WAVES FOR A MIXED-TYPE SYSTEM FROM CHEMOTAXIS 被引量:1
15
作者 何芬 王振 陈停停 《Acta Mathematica Scientia》 SCIE CSCD 2023年第4期1717-1734,共18页
In this paper,we study the shock waves for a mixed-type system from chemotaxis.We are concerned with the jump conditions for the left state which is located in the elliptical region and the right state in the hyperbol... In this paper,we study the shock waves for a mixed-type system from chemotaxis.We are concerned with the jump conditions for the left state which is located in the elliptical region and the right state in the hyperbolic region.Under the generalized entropy conditions,we find that there are different shock wave structures for different parameters.To guarantee the uniqueness of the solutions,we obtain the admissible shock waves which satisfy the generalized entropy condition in both parameters.Finally,we construct the Riemann solutions in some solvable regions. 展开更多
关键词 mixed-type shock waves entropy condition CHEMOTAXIS conservation laws
下载PDF
WavewatchⅢ模拟和统计方法在最大波高预报方面的评测分析
16
作者 王娟娟 侯放 +1 位作者 吴淑萍 王久珂 《海洋预报》 CSCD 北大核心 2024年第1期1-9,共9页
为了研究WavewatchⅢ(WWⅢ)海浪模型对最大波高的模拟能力及其与传统统计关系方法的差异,通过对两次台风浪过程的后报模拟和半年的业务化预报,分析了WWⅢ数值模拟的准确度及其与统计关系方法的精度差异。研究结果表明:WWⅢ数值模拟的最... 为了研究WavewatchⅢ(WWⅢ)海浪模型对最大波高的模拟能力及其与传统统计关系方法的差异,通过对两次台风浪过程的后报模拟和半年的业务化预报,分析了WWⅢ数值模拟的准确度及其与统计关系方法的精度差异。研究结果表明:WWⅢ数值模拟的最大波高(Hmax)的精度略低于有效波高(Hs),但也达到了24 h预报相对误差(H_(max)≥1 m)低于18%、相关系数高于0.94的水平,模拟精度可靠,可以用于业务化预报;与两种统计关系方法(H_(max)和H_(s)分别为1.42和1.52)计算的最大波高相比,数值模拟的精度总体与其相当,但在H_(max)和H_(s)比值大于1.65这种易出现危险的海况下,数值模拟具有更高的准确性,更适合应用于海浪预警报服务。 展开更多
关键词 最大波高 wavewatchⅢ模型 数值模拟 统计关系 预报精度
下载PDF
Time-frequency Feature Extraction Method of the Multi-Source Shock Signal Based on Improved VMD and Bilateral Adaptive Laplace Wavelet 被引量:2
17
作者 Nanyang Zhao Jinjie Zhang +2 位作者 Zhiwei Mao Zhinong Jiang He Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期166-179,共14页
Vibration signals have the characteristics of multi-source strong shock coupling and strong noise interference owing to the complex structure of reciprocating machinery.Therefore,it is difficult to extract,analyze,and... Vibration signals have the characteristics of multi-source strong shock coupling and strong noise interference owing to the complex structure of reciprocating machinery.Therefore,it is difficult to extract,analyze,and diagnose mechanical fault features.To accurately extract sensitive features from the strong noise interference and unsteady monitoring signals of reciprocating machinery,a study on the time-frequency feature extraction method of multi-source shock signals is conducted.Combining the characteristics of reciprocating mechanical vibration signals,a targeted optimization method considering the variational modal decomposition(VMD)mode number and second penalty factor is proposed,which completed the adaptive decomposition of coupled signals.Aiming at the bilateral asymmetric attenuation characteristics of reciprocating mechanical shock signals,a new bilateral adaptive Laplace wavelet(BALW)is established.A search strategy for wavelet local parameters of multi-shock signals is proposed using the harmony search(HS)method.A multi-source shock simulation signal is established,and actual data on the valve fault are obtained through diesel engine fault experiments.The fault recognition rate of the intake and exhaust valve clearance is above 90%and the extraction accuracy of the shock start position is improved by 10°. 展开更多
关键词 shock Signal processing waveLET VMD Fault diagnosis Diesel engine
下载PDF
Instrumented assisted soft tissue mobilization vs extracorporeal shock wave therapy in treatment of myofascial pain syndrome 被引量:1
18
作者 Nourhan Elsayed Shamseldeen Mohammed Moustafa Aldosouki Hegazy +1 位作者 Nadia Abdalazeem Fayaz Nesreen Fawzy Mahmoud 《World Journal of Orthopedics》 2023年第7期572-581,共10页
BACKGROUND Active myofascial trigger points(TrPs)often occur in the upper region of the upper trapezius(UT)muscle.These TrPs can be a significant source of neck,shoulder,and upper back pain and headaches.These TrPs an... BACKGROUND Active myofascial trigger points(TrPs)often occur in the upper region of the upper trapezius(UT)muscle.These TrPs can be a significant source of neck,shoulder,and upper back pain and headaches.These TrPs and their related pain and disability can adversely affect an individual’s everyday routine functioning,work-related productivity,and general quality of life.AIM To investigate the effects of instrument assisted soft tissue mobilization(IASTM)vs extracorporeal shock wave therapy(ESWT)on the TrPs of the UT muscle.METHODS A randomized,single-blind,comparative clinical study was conducted at the Medical Center of the Egyptian Railway Station in Cairo.Forty patients(28 females and 12 males),aged between 20-years-old and 40-years-old,with active myofascial TrPs in the UT muscle were randomly assigned to two equal groups(A and B).Group A received IASTM,while group B received ESWT.Each group was treated twice weekly for 2 weeks.Both groups received muscle energy technique for the UT muscle.Patients were evaluated twice(pre-and posttreatment)for pain intensity using the visual analogue scale and for pain pressure threshold(PPT)using a pressure algometer.RESULTS Comparing the pre-and post-treatment mean values for all variables for group A,there were significant differences in pain intensity for TrP1 and TrP2(P=0.0001)and PPT for TrP1(P=0.0002)and TrP2(P=0.0001).Also,for group B,there were significant differences between the pre-and post-treatment pain intensity for TrP1 and TrP2 and PPT for TrP1 and TrP2(P=0.0001).There were no significant differences between the two groups in the post-treatment mean values of pain intensity for TrP1(P=0.9)and TrP2(P=0.76)and PPT for TrP1(P=0.09)and for TrP2(P=0.91).CONCLUSION IASTM and ESWT are effective methods for improving pain and PPT in patients with UT muscle TrPs.There is no significant difference between either treatment method. 展开更多
关键词 Myofascial trigger points Upper trapezius muscle Instrument-assisted soft tissue mobilization Extracorporeal shock wave therapy Myofascial pain syndrome
下载PDF
基于D-Wave Advantage的量子退火公钥密码攻击算法研究
19
作者 王潮 王启迪 +2 位作者 洪春雷 胡巧云 裴植 《计算机学报》 EI CAS CSCD 北大核心 2024年第5期1030-1044,共15页
D-Wave专用量子计算机的原理量子退火凭借独特的量子隧穿效应可跳出传统智能算法极易陷入的局部极值,可视为一类具有全局寻优能力的人工智能算法.本文研究了两类基于量子退火的RSA公钥密码攻击算法(分解大整数N=pq):一是将密码攻击数学... D-Wave专用量子计算机的原理量子退火凭借独特的量子隧穿效应可跳出传统智能算法极易陷入的局部极值,可视为一类具有全局寻优能力的人工智能算法.本文研究了两类基于量子退火的RSA公钥密码攻击算法(分解大整数N=pq):一是将密码攻击数学方法转为组合优化问题或指数级空间搜索问题,通过Ising模型或QUBO模型求解,提出了乘法表的高位优化模型,建立新的降维公式,使用D-Wave Advantage分解了 200万整数2269753.大幅度超过普渡大学、Lockheed Martin和富士通等实验指标,且Ising模型系数h范围缩小了 84%,系数J范围缩小了 80%,极大地提高了分解成功率,这是一类完全基于D-Wave量子计算机的攻击算法;二是基于量子退火算法融合密码攻击数学方法优化密码部件的攻击,采用量子退火优化CVP问题求解,通过量子隧穿效应获得比Babai算法更近的向量,提高了 CVP问题中光滑对的搜索效率,在D-Wave Advantage上实现首次50比特RSA整数分解.实验表明,在通用量子计算机器件进展缓慢情况下,D-Wave表现出更好的现实攻击能力,且量子退火不存在NISQ量子计算机VQA算法的致命缺陷贫瘠高原问题:算法会无法收敛且无法扩展到大规模攻击. 展开更多
关键词 RSA D-wave 量子退火 CVP 量子隧穿 整数分解 量子计算
下载PDF
Investigation of Supersonic Shock Wave Loading on Thin Metallic Sheets
20
作者 Khushi Ram Kartikeya Kartikeya +1 位作者 Puneet Mahajan Naresh Bhatnagar 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期10-14,共5页
Shock tube experiments were carried out to investigate dynamic behavior of Ultra-high hardness(UHH)steel and Aluminium(Al) sheets of 0.8 mm thickness at 0.55, 0.9 and 1.18 MPa peak-over pressure.Experimental results s... Shock tube experiments were carried out to investigate dynamic behavior of Ultra-high hardness(UHH)steel and Aluminium(Al) sheets of 0.8 mm thickness at 0.55, 0.9 and 1.18 MPa peak-over pressure.Experimental results showed that center point deflection increases with an increase in peak-over pressure for Al sheets. However, UHH steel sheets showed negligible deformation when loaded at low peak-over pressures and showed sudden brittle failure at high peak-over pressures. Similar results were obtained by quasi-static testing, UHH steel failed abruptly while Al showed ductile behavior. Results from literature indicate that to protect structures against shock loading it is necessary that they dissipate energy via plastic deformation. The Al sheets were shown to deform plastically both in quasi-static and shock loading. Thus, hardness along with ductility is required to dissipate supersonic shock waves. 展开更多
关键词 shock tube Peak-over pressure shock wave Blast mitigation Plastic deformation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部