Martensite is an important microstructure in ultrahigh-strength steels,and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix.Despite cons...Martensite is an important microstructure in ultrahigh-strength steels,and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix.Despite considerable research efforts devoted to this area,a systematic summary of these advancements is lacking.This review focuses on the precipitates prevalent in ultrahigh-strength martensitic steel,primarily carbides(e.g.,MC,M_(2)C,and M_(3)C)and intermetallic compounds(e.g.,Ni Al,Ni_(3)X,and Fe_(2)Mo).The precipitation-strengthening effect of these precipitates on ultrahigh-strength martensitic steel is discussed from the aspects of heat treatment processes,microstructure of precipitate-strengthened martensite matrix,and mechanical performance.Finally,a perspective on the development of precipitation-strengthened martensitic steel is presented to contribute to the advancement of ultrahigh-strength martensitic steel.This review highlights significant findings,ongoing challenges,and opportunities in the development of ultrahigh-strength martensitic steel.展开更多
The reverse transformation temperature and recovery strain ratio of the martensite formed during the cooling process under a constant stress in TiNi shape memory alloy wires are studied in this paper. Results sh...The reverse transformation temperature and recovery strain ratio of the martensite formed during the cooling process under a constant stress in TiNi shape memory alloy wires are studied in this paper. Results show that a higher level of the applied constant stress during the cooling process will induce martensite with a higher reverse martensitic transformation start temperature As and a smaller recovery strain ratio. Similarly, a prestrain at the room temperature elevates the As temperature and decreases the recovery strain ratio. However, the As temperature and the recovery strain ratio of the martensite formed during the cooling process under a constant stress are lower than those of the martensite formed by prestrain at the room temperature.展开更多
The morphology and formation mechanism of the substructure of martensite in TC21 alloy was investigated by XRD and TEM. The results showed that the martensitic transformation from β to α" occurs upon quenching afte...The morphology and formation mechanism of the substructure of martensite in TC21 alloy was investigated by XRD and TEM. The results showed that the martensitic transformation from β to α" occurs upon quenching after solution treatment between 960-1000 ℃. The antiphase boundary (APB)-like structure was observed clearly in the α" martensite plates. The APB-like contrasts exist along the (001) and (020) planes of α" martensite. This APB-like structure of α" martensite was identified as a kind of stacking fault with an APB-like morphology induced by martensitic transformation and not by order/disorder transition. During martensitic transformation, martensitic domains nucleate and grow, eventually encounter each other, resulting in the formation of the APBdike contrast.展开更多
An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interf...An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model.展开更多
Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this ...Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron mi- croscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the for- mation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro- structural evolution and hardness variation, the process of tempering can be separated into three steps.展开更多
The apparent morphologies of packet martensite in eight high carbon steels were researched by using optical microscope, scanning electron microscope, and transmission electron microscope. It was found that the apparen...The apparent morphologies of packet martensite in eight high carbon steels were researched by using optical microscope, scanning electron microscope, and transmission electron microscope. It was found that the apparent morphologies, substructures, and habit plane of packet martensite in high carbon steels are entirely different from that in low carbon steels; the substructures of packet martensite in high carbon steels possess fully twinned structure, while the substructures of individual coarse martensite plates in these steels bear both fully and partially twinned structures. The formation reason for apparent morphologies, substructures and two habit planes (i. e, { 111 }, and { 225}r) of high carbon martensite were discussed in detail.展开更多
The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrason...The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties.展开更多
To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was invest...To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was investigated in the solution-treated CoAl and CoNi alloys. In-situ optical observations were employed to investigate the contents of thermal HCP martensite before and after deep cooling and its influence on the stress-induced HCP martensite transformation and SME. The results show that the SME in both the CoAl and the CoNi alloys results from the stress-induced HCP martensite. The role of the thermal HCP martensite in both of them is the strengthening of the matrix. The much higher yield strength in the solution-treated CoAl alloy due to solution strengthening of Al is responsible for its better SME compared with the CoNi alloy.展开更多
The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-mar...The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-martensite in stainless steel 304 increases with the truestrain. As α′-martensite content increased, free corrosion potential and pitting potential ofstainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also foundthat pitting nucleated preferentially at the phase interfaces between martensite and austenite.There existed apparent difference between electrochemical properties of austenite and of martensitefor stainless steel 304 and 316L in 3.5% NaCl solution.展开更多
The as-quenched microstructures of low carbon steels were observed by scanning electron microscope, and the thin foil specimen was examined by transmission electron microscopy. It is found that the space morphology of...The as-quenched microstructures of low carbon steels were observed by scanning electron microscope, and the thin foil specimen was examined by transmission electron microscopy. It is found that the space morphology of low carbon martensite is not lath-like but thin sheet-like, which is designated as sheet-like martensite or packet thin sheet martensite. A three-dimensional model was presented. The reason for exhibiting two apparent morphologies, i.e. double contrast packet and simple contrast packet, in as-quenched low carbon steels was analyzed in detail. It is suggested that the data of martensitic habit plane measured by other procedures should be further inspected using optical metallographic method. The apparent morphologies of low carbon martensite confirm that its habit plane should be {557}_r, rather than {111}_r, {345}_r, nor {213}_r.展开更多
Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at lo...Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP microstructures using the differential Crussard-Jaoul technique demonstrate two stages of work hardening for all samples.展开更多
The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestr...The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestraining at the room temperature had a significant influence on the differential scanning calorimetry (DSC) results of the composites. By a comparison to the high temperature X-ray diffraction (XRD) results, it was confirmed that the martensite was divided into two groups: the self-accommodating martensite (SAM) and the preferentially oriented martensite (POM). The evolving process of the separation of martensite was discussed.展开更多
The strain tensor and displacement vector associated with lattice deformation were introduced to discuss the effect of self-accommodation and plastic accommodation in martensitic transformation,and the models for {557...The strain tensor and displacement vector associated with lattice deformation were introduced to discuss the effect of self-accommodation and plastic accommodation in martensitic transformation,and the models for {557}_f and {3,10,15}_f martensite fomation were proposed, along with the experimental verification. It is considered that the invariant habit plane may result from the self-accommodation between different martensitic variants causing the internal twin structure. However, as the strength of parent phase is low enough for the plastic accommodation to occur the dislocation substructure in martensite be produced, in which case the invariant habit plane is difficult to form so the{225}_f and {557}_f habit planes are difficult to explain by the phenomenological crystallographic theory. So,there are some limitations for the martensitic invariant habit plane.In the present work the authors also suggest that the martensite morphology depends on the competition between self-accommodation and plastic accommodation including factors not only of strength but also of structure of the parent phase However, when the density of crystal defects is high dislocations rather than twinned martensite will form in spite of the higher strength of the parent phase.展开更多
This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicat...This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicate. The result of thc experiments shows that the austenizing temperature should rise with increasing silicon content, otherwise much undissolved ferrite is present in the matrix after quenching. However the undissolvec ferrite can be decreased greatly or even eliminated by adding appropriate amount of ooron. On this condition, the amount of bainite gets increasing and the amount of residual austenite decreasing with the silicon cortent increasing. An approach has also been made to the mechanism of the effect of silicon on the transformation of bainite in ductile iron. The T.T.T. curves measured show that the increase of sllicon content causes the curve to shift to the left. This is quite different from the fact in steel.展开更多
The stabilization of thermoelastic martensite in a rapidly solidified Cu-Zn-A1 alloy is be- lieved to be the process of disordering in atomic configuration during which the structure of martensite gradually transforms...The stabilization of thermoelastic martensite in a rapidly solidified Cu-Zn-A1 alloy is be- lieved to be the process of disordering in atomic configuration during which the structure of martensite gradually transforms into N9R(b/a=1/3^(1/2))from M18R.This is dependent upon the intrinsic decomposition tendency of the martensite.展开更多
The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of m...The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels.Pitting is the most common corrosion type of high strength stainless steels,which always occurs at weak area of passive film such as inclusions,carbide/intermetallic interfaces.Meanwhile,the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion.The precipitation,dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps,leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels.Yet,the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels.Finally,the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52071023)financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing,No.FRF-TP-2021-04C1,and 06500135)。
文摘Martensite is an important microstructure in ultrahigh-strength steels,and enhancing the strength of martensitic steels often involves the introduction of precipitated phases within the martensitic matrix.Despite considerable research efforts devoted to this area,a systematic summary of these advancements is lacking.This review focuses on the precipitates prevalent in ultrahigh-strength martensitic steel,primarily carbides(e.g.,MC,M_(2)C,and M_(3)C)and intermetallic compounds(e.g.,Ni Al,Ni_(3)X,and Fe_(2)Mo).The precipitation-strengthening effect of these precipitates on ultrahigh-strength martensitic steel is discussed from the aspects of heat treatment processes,microstructure of precipitate-strengthened martensite matrix,and mechanical performance.Finally,a perspective on the development of precipitation-strengthened martensitic steel is presented to contribute to the advancement of ultrahigh-strength martensitic steel.This review highlights significant findings,ongoing challenges,and opportunities in the development of ultrahigh-strength martensitic steel.
基金supported by the National Natural Science Foundation of the People’s Republic of China under grant No.50071037.
文摘The reverse transformation temperature and recovery strain ratio of the martensite formed during the cooling process under a constant stress in TiNi shape memory alloy wires are studied in this paper. Results show that a higher level of the applied constant stress during the cooling process will induce martensite with a higher reverse martensitic transformation start temperature As and a smaller recovery strain ratio. Similarly, a prestrain at the room temperature elevates the As temperature and decreases the recovery strain ratio. However, the As temperature and the recovery strain ratio of the martensite formed during the cooling process under a constant stress are lower than those of the martensite formed by prestrain at the room temperature.
基金Project (2011AA030101) supported by the High-tech Research and Development Program of China
文摘The morphology and formation mechanism of the substructure of martensite in TC21 alloy was investigated by XRD and TEM. The results showed that the martensitic transformation from β to α" occurs upon quenching after solution treatment between 960-1000 ℃. The antiphase boundary (APB)-like structure was observed clearly in the α" martensite plates. The APB-like contrasts exist along the (001) and (020) planes of α" martensite. This APB-like structure of α" martensite was identified as a kind of stacking fault with an APB-like morphology induced by martensitic transformation and not by order/disorder transition. During martensitic transformation, martensitic domains nucleate and grow, eventually encounter each other, resulting in the formation of the APBdike contrast.
文摘An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model.
基金financially supported by the China National Funds for Distinguished Young Scientists(No.51325401)the International Thermonuclear Experimental Reactor(ITER)Program Special Project(No.2014GB125006)+1 种基金the National Natural Science Foundation of China(No.51104107)the Major State Basic Research Development Program(No.2014CB046805)
文摘Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron mi- croscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the for- mation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro- structural evolution and hardness variation, the process of tempering can be separated into three steps.
文摘The apparent morphologies of packet martensite in eight high carbon steels were researched by using optical microscope, scanning electron microscope, and transmission electron microscope. It was found that the apparent morphologies, substructures, and habit plane of packet martensite in high carbon steels are entirely different from that in low carbon steels; the substructures of packet martensite in high carbon steels possess fully twinned structure, while the substructures of individual coarse martensite plates in these steels bear both fully and partially twinned structures. The formation reason for apparent morphologies, substructures and two habit planes (i. e, { 111 }, and { 225}r) of high carbon martensite were discussed in detail.
基金supported by the National Key Fundamental Research and Development Program of China (No.2004CB619105)
文摘The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties.
基金Projects(51171123,51271128)supported by the National Natural Science Foundation of China
文摘To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was investigated in the solution-treated CoAl and CoNi alloys. In-situ optical observations were employed to investigate the contents of thermal HCP martensite before and after deep cooling and its influence on the stress-induced HCP martensite transformation and SME. The results show that the SME in both the CoAl and the CoNi alloys results from the stress-induced HCP martensite. The role of the thermal HCP martensite in both of them is the strengthening of the matrix. The much higher yield strength in the solution-treated CoAl alloy due to solution strengthening of Al is responsible for its better SME compared with the CoNi alloy.
文摘The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-martensite in stainless steel 304 increases with the truestrain. As α′-martensite content increased, free corrosion potential and pitting potential ofstainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also foundthat pitting nucleated preferentially at the phase interfaces between martensite and austenite.There existed apparent difference between electrochemical properties of austenite and of martensitefor stainless steel 304 and 316L in 3.5% NaCl solution.
文摘The as-quenched microstructures of low carbon steels were observed by scanning electron microscope, and the thin foil specimen was examined by transmission electron microscopy. It is found that the space morphology of low carbon martensite is not lath-like but thin sheet-like, which is designated as sheet-like martensite or packet thin sheet martensite. A three-dimensional model was presented. The reason for exhibiting two apparent morphologies, i.e. double contrast packet and simple contrast packet, in as-quenched low carbon steels was analyzed in detail. It is suggested that the data of martensitic habit plane measured by other procedures should be further inspected using optical metallographic method. The apparent morphologies of low carbon martensite confirm that its habit plane should be {557}_r, rather than {111}_r, {345}_r, nor {213}_r.
基金supported by the National Twelfth Five-year Science and Technology Support Program of China (Grant Nos. 2011BAE13B01 and 2011BAE13B03)
文摘Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP microstructures using the differential Crussard-Jaoul technique demonstrate two stages of work hardening for all samples.
基金the National Natural Science Foundation of China under grant No. 59731030.
文摘The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestraining at the room temperature had a significant influence on the differential scanning calorimetry (DSC) results of the composites. By a comparison to the high temperature X-ray diffraction (XRD) results, it was confirmed that the martensite was divided into two groups: the self-accommodating martensite (SAM) and the preferentially oriented martensite (POM). The evolving process of the separation of martensite was discussed.
文摘The strain tensor and displacement vector associated with lattice deformation were introduced to discuss the effect of self-accommodation and plastic accommodation in martensitic transformation,and the models for {557}_f and {3,10,15}_f martensite fomation were proposed, along with the experimental verification. It is considered that the invariant habit plane may result from the self-accommodation between different martensitic variants causing the internal twin structure. However, as the strength of parent phase is low enough for the plastic accommodation to occur the dislocation substructure in martensite be produced, in which case the invariant habit plane is difficult to form so the{225}_f and {557}_f habit planes are difficult to explain by the phenomenological crystallographic theory. So,there are some limitations for the martensitic invariant habit plane.In the present work the authors also suggest that the martensite morphology depends on the competition between self-accommodation and plastic accommodation including factors not only of strength but also of structure of the parent phase However, when the density of crystal defects is high dislocations rather than twinned martensite will form in spite of the higher strength of the parent phase.
文摘This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicate. The result of thc experiments shows that the austenizing temperature should rise with increasing silicon content, otherwise much undissolved ferrite is present in the matrix after quenching. However the undissolvec ferrite can be decreased greatly or even eliminated by adding appropriate amount of ooron. On this condition, the amount of bainite gets increasing and the amount of residual austenite decreasing with the silicon cortent increasing. An approach has also been made to the mechanism of the effect of silicon on the transformation of bainite in ductile iron. The T.T.T. curves measured show that the increase of sllicon content causes the curve to shift to the left. This is quite different from the fact in steel.
文摘The stabilization of thermoelastic martensite in a rapidly solidified Cu-Zn-A1 alloy is be- lieved to be the process of disordering in atomic configuration during which the structure of martensite gradually transforms into N9R(b/a=1/3^(1/2))from M18R.This is dependent upon the intrinsic decomposition tendency of the martensite.
文摘The high strength martensite steels are widely used in aerospace,ocean engineering,etc.,due to their high strength,good ductility and acceptable corrosion resistance.This paper provides a review for the influence of microstructure on corrosion behavior of high strength martensite steels.Pitting is the most common corrosion type of high strength stainless steels,which always occurs at weak area of passive film such as inclusions,carbide/intermetallic interfaces.Meanwhile,the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion.The precipitation,dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps,leading to hydrogen embrittlement and stress corrosion cracking for high strength martensite steels.Yet,the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for high strength martensite steels.Finally,the corrosion mechanisms of additive manufacturing high strength steels and the ideas for designing new high strength martensite steel are explored.