Some properties of convex cones are obtained and are used to derive several equivalent conditions as well as another important property for nearly cone-subconvexlike set-valued functions. Under the assumption of nearl...Some properties of convex cones are obtained and are used to derive several equivalent conditions as well as another important property for nearly cone-subconvexlike set-valued functions. Under the assumption of nearly cone-subconvexlikeness,a Lagrangian multiplier theorem on Benson proper efficiency is presented. Related results are generalized.展开更多
A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condit...A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condition of set-valued optimization under Benson proper efficiency is established, its sufficience is discussed. The form of the optimality conditions obtained here completely tally with the classical results when the set-valued map is specialized to be a single-valued map.展开更多
Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. U...Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.展开更多
This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary an...This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.展开更多
In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly prope...In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly efficient solutions of set-valued optimization problem.展开更多
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr...In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.展开更多
The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary con...The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.展开更多
The behavior of the perturbation map is analyzed quantitatively by using the concept of contingent derivatives for set-valued maps under Benson proper efficiency. Let W(u) = Pmin[G(u),S],y∧∈W(u∧). It is shown that,...The behavior of the perturbation map is analyzed quantitatively by using the concept of contingent derivatives for set-valued maps under Benson proper efficiency. Let W(u) = Pmin[G(u),S],y∧∈W(u∧). It is shown that, under some conditions, DW(u∧,y∧) Pmin[DG(u∧,y∧),S] , and under some other conditions, DW(u∧,y∧) Pmin[DG(u∧,y∧),S].展开更多
In topological vector spaces, we estalish a Lagrange Multiplier Theorem forproper efficiency of nonconvex vector opti mization problems. The saddle point theoremsfor the scalar-valued Lagrangian fonction are derived. ...In topological vector spaces, we estalish a Lagrange Multiplier Theorem forproper efficiency of nonconvex vector opti mization problems. The saddle point theoremsfor the scalar-valued Lagrangian fonction are derived. A new duality form is introducedand the duality theorems are established.展开更多
文摘Some properties of convex cones are obtained and are used to derive several equivalent conditions as well as another important property for nearly cone-subconvexlike set-valued functions. Under the assumption of nearly cone-subconvexlikeness,a Lagrangian multiplier theorem on Benson proper efficiency is presented. Related results are generalized.
文摘A kind of tangent derivative and the concepts of strong and weak * pseudoconvexity for a set-valued map are introduced. By the standard separation theorems of the convex sets and cones the optimality Fritz John condition of set-valued optimization under Benson proper efficiency is established, its sufficience is discussed. The form of the optimality conditions obtained here completely tally with the classical results when the set-valued map is specialized to be a single-valued map.
文摘Several equivalent statements of generalized subconvexlike set-valued map are established in ordered linear spaces. Using vector closure, we introduce Benson proper efficient solution of vector optimization problem. Under the assumption of generalized subconvexlikeness, scalarization, multiplier and saddle point theorems are obtained in the sense of Benson proper efficiency.
文摘This note studies the optimality conditions of vector optimization problems involving generalized convexity in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary and sufficient optimality conditions are established for Henig proper and strong minimal solutions respectively in generalized preinvex vector optimization problems.
文摘In this paper, a characterization of tightly properly efficient solutions of set-valued optimization problem is obtained. The concept of the well-posedness for a special scalar problem is linked with the tightly properly efficient solutions of set-valued optimization problem.
文摘In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.
文摘The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary conditions for a feasible solution to be an efficient or properly efficient solution are obtained.
基金Supported by the National Natural Science Foundation of China(69972036)
文摘The behavior of the perturbation map is analyzed quantitatively by using the concept of contingent derivatives for set-valued maps under Benson proper efficiency. Let W(u) = Pmin[G(u),S],y∧∈W(u∧). It is shown that, under some conditions, DW(u∧,y∧) Pmin[DG(u∧,y∧),S] , and under some other conditions, DW(u∧,y∧) Pmin[DG(u∧,y∧),S].
文摘In topological vector spaces, we estalish a Lagrange Multiplier Theorem forproper efficiency of nonconvex vector opti mization problems. The saddle point theoremsfor the scalar-valued Lagrangian fonction are derived. A new duality form is introducedand the duality theorems are established.