This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Auto...This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%.展开更多
The Quantum Approximate Optimization Algorithm(QAOA)is an algorithmic framework for finding approximate solutions to combinatorial optimization problems.It consists of interleaved unitary transformations induced by tw...The Quantum Approximate Optimization Algorithm(QAOA)is an algorithmic framework for finding approximate solutions to combinatorial optimization problems.It consists of interleaved unitary transformations induced by two operators labelled the mixing and problem Hamiltonians.To fit this framework,one needs to transform the original problem into a suitable form and embed it into these two Hamiltonians.In this paper,for the well-known NP-hard Traveling Salesman Problem(TSP),we encode its constraints into the mixing Hamiltonian rather than the conventional approach of adding penalty terms to the problem Hamiltonian.Moreover,we map edges(routes)connecting each pair of cities to qubits,which decreases the search space significantly in comparison to other approaches.As a result,our method can achieve a higher probability for the shortest round-trip route with only half the number of qubits consumed compared to IBM Q’s approach.We argue the formalization approach presented in this paper would lead to a generalized framework for finding,in the context of QAOA,high-quality approximate solutions to NP optimization problems.展开更多
In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ...In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.展开更多
0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. The...0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.展开更多
In the paper we discuss some properties of the state operators of the optimal obstacle control problem for elliptic variational inequality.Existence,uniqueness and regularity of the optimal control,problem are establi...In the paper we discuss some properties of the state operators of the optimal obstacle control problem for elliptic variational inequality.Existence,uniqueness and regularity of the optimal control,problem are established.In addition,the approximation of the optimal obstacle problem is also studied.展开更多
This paper deals with the optimal control problems of systems governed by a parabolic variational inequality coupled with a semilinear parabolic differential equations. The maximum principle and some kind of approxima...This paper deals with the optimal control problems of systems governed by a parabolic variational inequality coupled with a semilinear parabolic differential equations. The maximum principle and some kind of approximate controllability are studied.展开更多
The multiple knapsack problem denoted by MKP (B,S,m,n) can be defined as fol- lows.A set B of n items and a set Sof m knapsacks are given such thateach item j has a profit pjand weightwj,and each knapsack i has a ca...The multiple knapsack problem denoted by MKP (B,S,m,n) can be defined as fol- lows.A set B of n items and a set Sof m knapsacks are given such thateach item j has a profit pjand weightwj,and each knapsack i has a capacity Ci.The goal is to find a subset of items of maximum profit such that they have a feasible packing in the knapsacks.MKP(B,S,m,n) is strongly NP- Complete and no polynomial- time approximation algorithm can have an approxima- tion ratio better than0 .5 .In the last ten years,semi- definite programming has been empolyed to solve some combinatorial problems successfully.This paper firstly presents a semi- definite re- laxation algorithm (MKPS) for MKP (B,S,m,n) .It is proved that MKPS have a approxima- tion ratio better than 0 .5 for a subclass of MKP (B,S,m,n) with n≤ 1 0 0 ,m≤ 5 and maxnj=1{ wj} minmi=1{ Ci} ≤ 2 3 .展开更多
By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H...By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.展开更多
The minimum vertex cover problem(MVCP)is a well-known combinatorial optimization problem of graph theory.The MVCP is an NP(nondeterministic polynomial)complete problem and it has an exponential growing complexity with...The minimum vertex cover problem(MVCP)is a well-known combinatorial optimization problem of graph theory.The MVCP is an NP(nondeterministic polynomial)complete problem and it has an exponential growing complexity with respect to the size of a graph.No algorithm exits till date that can exactly solve the problem in a deterministic polynomial time scale.However,several algorithms are proposed that solve the problem approximately in a short polynomial time scale.Such algorithms are useful for large size graphs,for which exact solution of MVCP is impossible with current computational resources.The MVCP has a wide range of applications in the fields like bioinformatics,biochemistry,circuit design,electrical engineering,data aggregation,networking,internet traffic monitoring,pattern recognition,marketing and franchising etc.This work aims to solve the MVCP approximately by a novel graph decomposition approach.The decomposition of the graph yields a subgraph that contains edges shared by triangular edge structures.A subgraph is covered to yield a subgraph that forms one or more Hamiltonian cycles or paths.In order to reduce complexity of the algorithm a new strategy is also proposed.The reduction strategy can be used for any algorithm solving MVCP.Based on the graph decomposition and the reduction strategy,two algorithms are formulated to approximately solve the MVCP.These algorithms are tested using well known standard benchmark graphs.The key feature of the results is a good approximate error ratio and improvement in optimum vertex cover values for few graphs.展开更多
A method is presented here for structural optimization of elliptical-tip star grain.The grain structural integrity was improved by minimizing the most critical area of inner bore hoop strain during cool down.Optimizat...A method is presented here for structural optimization of elliptical-tip star grain.The grain structural integrity was improved by minimizing the most critical area of inner bore hoop strain during cool down.Optimization was done by sub-problem approximation method in conjunction with finite element analysis.Both radii of the ellipse were varied during optimization to find the optimal ellipse.The optimization resulted in grain geometry having minimum level of Inner bore hoop strain without violating the preset limits of burning perimeter.The von mises strain at grain inner bore was also reduced in resultant grain.展开更多
In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF n...In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.展开更多
文摘This paper states a new metaheuristic based on Deterministic Finite Automata (DFA) for the multi - objective optimization of combinatorial problems. First, a new DFA named Multi - Objective Deterministic Finite Automata (MDFA) is defined. MDFA allows the representation of the feasible solutions space of combinatorial problems. Second, it is defined and implemented a metaheuritic based on MDFA theory. It is named Metaheuristic of Deterministic Swapping (MODS). MODS is a local search strategy that works using a MDFA. Due to this, MODS never take into account unfeasible solutions. Hence, it is not necessary to verify the problem constraints for a new solution found. Lastly, MODS is tested using well know instances of the Bi-Objective Traveling Salesman Problem (TSP) from TSPLIB. Its results were compared with eight Ant Colony inspired algorithms and two Genetic algorithms taken from the specialized literature. The comparison was made using metrics such as Spacing, Generational Distance, Inverse Generational Distance and No-Dominated Generation Vectors. In every case, the MODS results on the metrics were always better and in some of those cases, the superiority was 100%.
基金This work is supported by the Natural Science Foundation,China(Grant No.61802002)Natural Science Foundation of Anhui Province,China(Grant No.1708085MF162).
文摘The Quantum Approximate Optimization Algorithm(QAOA)is an algorithmic framework for finding approximate solutions to combinatorial optimization problems.It consists of interleaved unitary transformations induced by two operators labelled the mixing and problem Hamiltonians.To fit this framework,one needs to transform the original problem into a suitable form and embed it into these two Hamiltonians.In this paper,for the well-known NP-hard Traveling Salesman Problem(TSP),we encode its constraints into the mixing Hamiltonian rather than the conventional approach of adding penalty terms to the problem Hamiltonian.Moreover,we map edges(routes)connecting each pair of cities to qubits,which decreases the search space significantly in comparison to other approaches.As a result,our method can achieve a higher probability for the shortest round-trip route with only half the number of qubits consumed compared to IBM Q’s approach.We argue the formalization approach presented in this paper would lead to a generalized framework for finding,in the context of QAOA,high-quality approximate solutions to NP optimization problems.
基金Project supported by the National Natural Science Foundation of China (Grant No.10571116)
文摘In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.
基金This project was supported by the National Natural Science Foundation of China (79970042).
文摘0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.
基金the National Natural Science Foundation of China(No.10472061)the Ph.D.Programs Foundation of Ministry of Education of China(No.20060280015)
文摘In the paper we discuss some properties of the state operators of the optimal obstacle control problem for elliptic variational inequality.Existence,uniqueness and regularity of the optimal control,problem are established.In addition,the approximation of the optimal obstacle problem is also studied.
基金This work was partially supported by the NutionalNatural Science Foundation of China
文摘This paper deals with the optimal control problems of systems governed by a parabolic variational inequality coupled with a semilinear parabolic differential equations. The maximum principle and some kind of approximate controllability are studied.
基金Supported by the National Natural Science Foundation of China(1 9971 0 78)
文摘The multiple knapsack problem denoted by MKP (B,S,m,n) can be defined as fol- lows.A set B of n items and a set Sof m knapsacks are given such thateach item j has a profit pjand weightwj,and each knapsack i has a capacity Ci.The goal is to find a subset of items of maximum profit such that they have a feasible packing in the knapsacks.MKP(B,S,m,n) is strongly NP- Complete and no polynomial- time approximation algorithm can have an approxima- tion ratio better than0 .5 .In the last ten years,semi- definite programming has been empolyed to solve some combinatorial problems successfully.This paper firstly presents a semi- definite re- laxation algorithm (MKPS) for MKP (B,S,m,n) .It is proved that MKPS have a approxima- tion ratio better than 0 .5 for a subclass of MKP (B,S,m,n) with n≤ 1 0 0 ,m≤ 5 and maxnj=1{ wj} minmi=1{ Ci} ≤ 2 3 .
基金Project(10171031) supported by the National Natural Science Foundation of China
文摘By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.
文摘The minimum vertex cover problem(MVCP)is a well-known combinatorial optimization problem of graph theory.The MVCP is an NP(nondeterministic polynomial)complete problem and it has an exponential growing complexity with respect to the size of a graph.No algorithm exits till date that can exactly solve the problem in a deterministic polynomial time scale.However,several algorithms are proposed that solve the problem approximately in a short polynomial time scale.Such algorithms are useful for large size graphs,for which exact solution of MVCP is impossible with current computational resources.The MVCP has a wide range of applications in the fields like bioinformatics,biochemistry,circuit design,electrical engineering,data aggregation,networking,internet traffic monitoring,pattern recognition,marketing and franchising etc.This work aims to solve the MVCP approximately by a novel graph decomposition approach.The decomposition of the graph yields a subgraph that contains edges shared by triangular edge structures.A subgraph is covered to yield a subgraph that forms one or more Hamiltonian cycles or paths.In order to reduce complexity of the algorithm a new strategy is also proposed.The reduction strategy can be used for any algorithm solving MVCP.Based on the graph decomposition and the reduction strategy,two algorithms are formulated to approximately solve the MVCP.These algorithms are tested using well known standard benchmark graphs.The key feature of the results is a good approximate error ratio and improvement in optimum vertex cover values for few graphs.
文摘A method is presented here for structural optimization of elliptical-tip star grain.The grain structural integrity was improved by minimizing the most critical area of inner bore hoop strain during cool down.Optimization was done by sub-problem approximation method in conjunction with finite element analysis.Both radii of the ellipse were varied during optimization to find the optimal ellipse.The optimization resulted in grain geometry having minimum level of Inner bore hoop strain without violating the preset limits of burning perimeter.The von mises strain at grain inner bore was also reduced in resultant grain.
文摘In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.