期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
B(LF,ω~2 )-refinability of inverse limits
1
作者 XIONG Zhao-hui YANG Ming-quan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第4期496-502,共7页
Let X be the limit of an inverse system {Xα, παβ, ∧} and and let λ be the cardinal number of A. Assume that each projection πα : X → Xα is an open and onto map and X is A-paracompact. We prove that if each ... Let X be the limit of an inverse system {Xα, παβ, ∧} and and let λ be the cardinal number of A. Assume that each projection πα : X → Xα is an open and onto map and X is A-paracompact. We prove that if each Xα is B(LF, ω^2)-refinable (hereditarily B(LF, ω^2)- refinable), then X is B(LF, ω^2)-refinable (hereditarily B(LF,ω ^2)-refinable). Furthermore, we show that B(LF, ω^2)-refinable spaces can be preserved inversely undcr closed maps. 展开更多
关键词 Inverse limit B(LF ω^2)-refinability hereditary B(LF ω ^2)-refinability.
下载PDF
Remarks on B(D,λ)-refinability
2
作者 葛英 《Northeastern Mathematical Journal》 CSCD 2004年第2期161-166,共6页
In this paper, some equivalent versions of B(D,λ)-refinability are given. One of these equivalent versions, is that a space X is B(D, ωo)-refinable if and only if X is strongly quasi-paracompact. As an application o... In this paper, some equivalent versions of B(D,λ)-refinability are given. One of these equivalent versions, is that a space X is B(D, ωo)-refinable if and only if X is strongly quasi-paracompact. As an application of the above result, the author shows that weak θ-refinability is strictly weaker than strong quasi-paracompactness in T4-spaces, which answers a question posed by Jiang. In addition, the author proves that a weak version of B(D,λ) always implies weak θ-refinability for any λ<ω1, and also give a T4, B(D,ωo)-refinable (=strongly quasi-paracompact) space which is not θ-refinable. 展开更多
关键词 B(D λ)-refinable strongly quasi-paracompact weakθ-refinable weakθ-refinable
下载PDF
On Inverse Limits of Normal δθ-refinable Spaces
3
作者 CAO Jin-wen (College of Information Management, Chengdu University of Technol ogy, Chengdu 610059, China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第3期286-290,共5页
This paper proves the following results: Le t X= lim ←{X σ,π σ ρ,Λ},|Λ|=λ, and every p rojection π σ: X→X σ be an open and onto mapping. (A) If X is λ-paracompact and every X σ is normal and δθ-ref... This paper proves the following results: Le t X= lim ←{X σ,π σ ρ,Λ},|Λ|=λ, and every p rojection π σ: X→X σ be an open and onto mapping. (A) If X is λ-paracompact and every X σ is normal and δθ-refinable, then X is normal and δθ-refinable; (B) If X is hereditarily λ-pa racompact and every X σ is hereditarily normal and hereditarily δθ- refinable, then X is hereditarily normal and hereditarily δθ-refiable . 展开更多
关键词 inverse limit Λ-PARACOMPACT normal and δθ -refinable hereditarily normal hereditarily δθ-refinable.
下载PDF
Hereditarily covering properties of inverse sequence limits
4
作者 Bin ZHAO Aili SONG Jing WEI 《Frontiers of Mathematics in China》 SCIE CSCD 2013年第4期987-997,共11页
Let {Xi,πki,ω} be an inverse sequence and X -- lim{Xi,πki,ω). If each Xi is hereditarily (resp. metaLindelSf, σ-metaLindelSf, σ-orthocompact, weakly suborthocompact, δθ-refinable, weakly θ-refinable, weakly... Let {Xi,πki,ω} be an inverse sequence and X -- lim{Xi,πki,ω). If each Xi is hereditarily (resp. metaLindelSf, σ-metaLindelSf, σ-orthocompact, weakly suborthocompact, δθ-refinable, weakly θ-refinable, weakly δθ-refinable), then so is X. 展开更多
关键词 Inverse sequence limit hereditarily metaLindelofness hereditarily weakly suborthocompactness hereditarily δθ-refinability hereditarily weakly θ-refinability countable product
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部