Mild hydrochloric acid hydrolysis of i-carrageenan from Eucheuma spinosum yielded two oligosaccharides of sulfated tetrasaccharide structure. These were characterized by Fourier Transform Infrared Spectroscopy (FT-IR)...Mild hydrochloric acid hydrolysis of i-carrageenan from Eucheuma spinosum yielded two oligosaccharides of sulfated tetrasaccharide structure. These were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR) and Electrospray Ionization Mass Spectrometry (ESIMS). Both oligosaccharides have structure of b-D-galactopyranose(Galp)4S-(1→4)-α-D-AnGalp2S-(1→3)-b-D-galactopyranose Galp)4S-(1→4)-α-D-AnGalp2S-(1→3). Application of the resulting oligosaccharides on protein delivery system in terms of encapsulation efficiency was performed.展开更多
The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with ...The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2×106 (mol/L)-1 and 3:1, respectively. However, the interaction between κ-carrageenan oligosaccharide and G-CSF was not found.展开更多
λ-Carrageenan is a highly sulfated polysaccharide alternating of 1,4-O-α-D-galactopyranose-2,6-sulfate(D2S,6S)and 1,3-O-β-D-galactopyranose-2-sulfate(G2S).λ-Carrageenases are desirable tools forλ-carrageenan degr...λ-Carrageenan is a highly sulfated polysaccharide alternating of 1,4-O-α-D-galactopyranose-2,6-sulfate(D2S,6S)and 1,3-O-β-D-galactopyranose-2-sulfate(G2S).λ-Carrageenases are desirable tools forλ-carrageenan degradation.Based on the genome mining,a novelλ-carrageenase Cgl150A_Wa was cloned from the bacterium Wenyingzhuangia aestuarii and expressed in Escherichia coli.Cgl150A_Wa was an endo-acting enzyme and exhibited its maximum activity at 30℃and pH 8.0.By employing a glycomics strategy that combined ultra-performance liquid chromatography-mass spectrometry analysis and glycoinformatics,Cgl150A_Wa was proven to degradeλ-carrageenan octaose and hexaose,and the major hydrolysis product of Cgl150A_Wa wasλ-carrageenan tetrose.In addition to the typicalλ-carrageenan motifs,the active center of Cgl150A_Wa might tolerate desulfatedλ-carrageenan motifs.Cgl150A_Wa is a potential biotechnological tool for preparingλ-carrageenan oligosaccharides and structural investigation.展开更多
Carrageenan oligosaccharides are important products that have demonstrated numerous bioactivities useful in the food,medicine,and cosmetics industries.However,the specifc structure–function relationships of carrageen...Carrageenan oligosaccharides are important products that have demonstrated numerous bioactivities useful in the food,medicine,and cosmetics industries.However,the specifc structure–function relationships of carrageenan oligosaccharides are not clearly described due to the defciency of high specifc carrageenases.Here,a truncated mutant OUC-FaKC16Q based on the reportedκ-neocarratetrose(Nκ4)-producingκ-carrageenase OUC-FaKC16A from Flavobacterium algicola was constructed and further studied.After truncating the C-terminal Por_Secre_tail(PorS)domain(responsible for substrate binding),the catalytic efciency and temperature stability decreased to a certain extent.Surprisingly,this truncation also enabled OUC-FaKC16Q to hydrolyze Nκ4 intoκ-neocarrabiose(Nκ2).The ofset of Arg265 residue in OUC-FaKC16Q may explain this change.Moreover,the high catalytic abilities,the main products,and the degradation modes of OUC-FaKC16A and OUC-FaKC16Q toward furcellaran were also demonstrated.Data suggested OUC-FaKC16A and OUC-FaKC16Q could hydrolyze furcellaran to produce mainly the desulfated oligosaccharides DA-G-(DA-G4S)2 and DA-G-DA-G4S,respectively.As a result,the spectrum of products ofκ-carrageenase OUC-FaKC16A has been fully expanded in this study,indicating its promising potential for application in the biomanufacturing of carrageenan oligosaccharides with specifc structures.展开更多
文摘Mild hydrochloric acid hydrolysis of i-carrageenan from Eucheuma spinosum yielded two oligosaccharides of sulfated tetrasaccharide structure. These were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR) and Electrospray Ionization Mass Spectrometry (ESIMS). Both oligosaccharides have structure of b-D-galactopyranose(Galp)4S-(1→4)-α-D-AnGalp2S-(1→3)-b-D-galactopyranose Galp)4S-(1→4)-α-D-AnGalp2S-(1→3). Application of the resulting oligosaccharides on protein delivery system in terms of encapsulation efficiency was performed.
基金The authors would like to acknowledge the support from the National Natural Science Foundation of China(Project number 20299035,20035010,20275039)Pilot of Knowledge Innovation Program of the Chinese Academy of Science(KSCX 2-3-02-02)on the above work.
文摘The interactions between granulocyte-colony stimulating factor (G-CSF) and dextran sulfate / κ-carrageenan oligosaccharide were studied by capillary zone electrophoresis. Dextran sulfate could strongly interact with G-CSF and the complex was detected. The binding constant and stoichiometry were determined to be 1.2×106 (mol/L)-1 and 3:1, respectively. However, the interaction between κ-carrageenan oligosaccharide and G-CSF was not found.
基金supported by the Fundamental Research Funds for the Central Universities(No.202012020)the National Key R&D Program of China(No.2018YFC 0311203).
文摘λ-Carrageenan is a highly sulfated polysaccharide alternating of 1,4-O-α-D-galactopyranose-2,6-sulfate(D2S,6S)and 1,3-O-β-D-galactopyranose-2-sulfate(G2S).λ-Carrageenases are desirable tools forλ-carrageenan degradation.Based on the genome mining,a novelλ-carrageenase Cgl150A_Wa was cloned from the bacterium Wenyingzhuangia aestuarii and expressed in Escherichia coli.Cgl150A_Wa was an endo-acting enzyme and exhibited its maximum activity at 30℃and pH 8.0.By employing a glycomics strategy that combined ultra-performance liquid chromatography-mass spectrometry analysis and glycoinformatics,Cgl150A_Wa was proven to degradeλ-carrageenan octaose and hexaose,and the major hydrolysis product of Cgl150A_Wa wasλ-carrageenan tetrose.In addition to the typicalλ-carrageenan motifs,the active center of Cgl150A_Wa might tolerate desulfatedλ-carrageenan motifs.Cgl150A_Wa is a potential biotechnological tool for preparingλ-carrageenan oligosaccharides and structural investigation.
基金This work was supported by the National Key Research and Development Program of China(2022YFF1100202)Natural Science Foundation of Shandong Province(ZR2020JQ15)+1 种基金Taishan Scholar Project of Shandong Province(tsqn201812020)Fundamental Research Funds for the Central Universities(201941002).
文摘Carrageenan oligosaccharides are important products that have demonstrated numerous bioactivities useful in the food,medicine,and cosmetics industries.However,the specifc structure–function relationships of carrageenan oligosaccharides are not clearly described due to the defciency of high specifc carrageenases.Here,a truncated mutant OUC-FaKC16Q based on the reportedκ-neocarratetrose(Nκ4)-producingκ-carrageenase OUC-FaKC16A from Flavobacterium algicola was constructed and further studied.After truncating the C-terminal Por_Secre_tail(PorS)domain(responsible for substrate binding),the catalytic efciency and temperature stability decreased to a certain extent.Surprisingly,this truncation also enabled OUC-FaKC16Q to hydrolyze Nκ4 intoκ-neocarrabiose(Nκ2).The ofset of Arg265 residue in OUC-FaKC16Q may explain this change.Moreover,the high catalytic abilities,the main products,and the degradation modes of OUC-FaKC16A and OUC-FaKC16Q toward furcellaran were also demonstrated.Data suggested OUC-FaKC16A and OUC-FaKC16Q could hydrolyze furcellaran to produce mainly the desulfated oligosaccharides DA-G-(DA-G4S)2 and DA-G-DA-G4S,respectively.As a result,the spectrum of products ofκ-carrageenase OUC-FaKC16A has been fully expanded in this study,indicating its promising potential for application in the biomanufacturing of carrageenan oligosaccharides with specifc structures.