具有粗糙核的积分算子交换子在λ-中心Morrey空间上的有界性被许多作者所研究。本文利用Hölder不等式、环分解等调和分析中的一些经典理论和方法,研究了由带有粗糙核的分数次积分算子和λ-中心BMO函数空间生成的广义交换子在λ-中...具有粗糙核的积分算子交换子在λ-中心Morrey空间上的有界性被许多作者所研究。本文利用Hölder不等式、环分解等调和分析中的一些经典理论和方法,研究了由带有粗糙核的分数次积分算子和λ-中心BMO函数空间生成的广义交换子在λ-中心Morrey空间上的有界性。本文的研究结果推广了Fu、Lin和Lu的部分结论。The boundedness of integral operator commutators with rough kernels on λ-central Morrey spaces and λ-central BMO function spaces has been studied by many authors. In this paper, the generalized commutators generated by fractional integral operators with rough kernels and the λ-central BMO function space are studied to be bounded on the λ-central Morrey space by using some classical theories and methods in the harmonic analysis such as Hölder’s inequality and ring decomposition. The results in this paper extended some conclusions of Fu, Lin and Lu.展开更多
文摘具有粗糙核的积分算子交换子在λ-中心Morrey空间上的有界性被许多作者所研究。本文利用Hölder不等式、环分解等调和分析中的一些经典理论和方法,研究了由带有粗糙核的分数次积分算子和λ-中心BMO函数空间生成的广义交换子在λ-中心Morrey空间上的有界性。本文的研究结果推广了Fu、Lin和Lu的部分结论。The boundedness of integral operator commutators with rough kernels on λ-central Morrey spaces and λ-central BMO function spaces has been studied by many authors. In this paper, the generalized commutators generated by fractional integral operators with rough kernels and the λ-central BMO function space are studied to be bounded on the λ-central Morrey space by using some classical theories and methods in the harmonic analysis such as Hölder’s inequality and ring decomposition. The results in this paper extended some conclusions of Fu, Lin and Lu.