Abstract A t-hyperwhesl (t 〉 3) of length l (or Wz(t) for brevity) is a t-uniform hypergraph (V, E), where t E= {e1,e2,...,el} and vl,v2,...,vt are distinct vertices of V = Ui=1 ei such that for i= 1,...,1, ...Abstract A t-hyperwhesl (t 〉 3) of length l (or Wz(t) for brevity) is a t-uniform hypergraph (V, E), where t E= {e1,e2,...,el} and vl,v2,...,vt are distinct vertices of V = Ui=1 ei such that for i= 1,...,1, vi,vi+1 ∈ei and ei ∩ ej = P, j ∈ {i - 1, i,i + 1}, where the operation on the subscripts is modulo 1 and P is a vertex of V which is different from vi, 1 〈 i 〈 l. In this paper, the minimum covering problem of MCλ(3, W(3),v) is investigated. Direct and recursive constructions on MCλ(3, W(3),v) are presented. The covering number cλ(3, W4(3), v) is finally determined for any positive integers v 〉 5 and A.展开更多
基金Supported by the National Natural Science Foundation of China (No.10771013 and 10831002)
文摘Abstract A t-hyperwhesl (t 〉 3) of length l (or Wz(t) for brevity) is a t-uniform hypergraph (V, E), where t E= {e1,e2,...,el} and vl,v2,...,vt are distinct vertices of V = Ui=1 ei such that for i= 1,...,1, vi,vi+1 ∈ei and ei ∩ ej = P, j ∈ {i - 1, i,i + 1}, where the operation on the subscripts is modulo 1 and P is a vertex of V which is different from vi, 1 〈 i 〈 l. In this paper, the minimum covering problem of MCλ(3, W(3),v) is investigated. Direct and recursive constructions on MCλ(3, W(3),v) are presented. The covering number cλ(3, W4(3), v) is finally determined for any positive integers v 〉 5 and A.