Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly fo...Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly formation of a trivalent G-quadruplex/hemin DNAzyme for colorimetric detection of Hg^(2+).A hairpin DNA(Hr)was designed with thymine-Hg^(2+)-thymine pairs that catalyzed by Exo III is prompted to happen upon binding Hg^(2+).A released DNA fragment triggers the catalytic assembly of other three hairpins(H1,H2,and H3)to form many trivalent G-quadruplex/hemin DNA enzymes for signal output.The developed sensor shows a dynamic range from 2 pM to 2μM,with an impressively low detection limit of 0.32 pM for Hg^(2+)detection.Such a sensor also has good selectivity toward Hg^(2+)detection in the presence of other common metal ions.This strategy shows the great potential for visual detection with portable type.展开更多
A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A doub...A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A double-stranded DNA fragment containing two binding sites was designed and incubated with the aryl hydrocarbon receptor (AhR) transformed by 2,3,7,8-tetrachlorodibenzo-p dioxin (TCDD) to generate TCDD:AhR:DNA complex which could protect receptor-binding DNA against exonuclease Ⅲ (Exo Ⅲ) digestion. With ExoⅢ treatment, free DNAs were digested and receptor-bound DNAs remained that could be amplified by PCR. By agarose gel electrophoreses a clear band (285bp) was detected using TCDD-treated sample, while nothing with control samples. To detect transformed AhR-DRE complex, 2 fmol DNAs and 3 ug cytosol proteins were found to be sufficient in the experiment. Compared with gel retardation assay, this new method is more sensitive for monitoring the Ah receptor-enhancer interaction without radioactive pollution.展开更多
核酸适配体是人工合成的短链核酸,作为分子识别元件,能够与各类靶标物质高特异性、高亲和力的结合,分为单链DNA和RNA两种类型。其中单链DNA适配体由于其稳定性比RNA适配体更好而更受欢迎,因此得到广泛应用。核酸适配体筛选通常是通过配...核酸适配体是人工合成的短链核酸,作为分子识别元件,能够与各类靶标物质高特异性、高亲和力的结合,分为单链DNA和RNA两种类型。其中单链DNA适配体由于其稳定性比RNA适配体更好而更受欢迎,因此得到广泛应用。核酸适配体筛选通常是通过配体指数富集系统进化技术(systematic evolution of ligands by exponential enrichment,SELEX)实现的,筛选能否成功在很大程度上取决于其最关键的单链制备步骤,即将双链DNA转化为相应的单链DNA。目前,存在许多方法可以制备单链DNA,包括热变性法、生物素-链霉亲和素亲和分离法、变性胶电泳分离法、核酸外切酶消化法、不对称聚合酶链式反应(polymerase chain reaction,PCR)法等。本文在总结文献报道的基础上,具体阐述了各种单链DNA制备方法的原理、优缺点及近5年的应用情况,并对这些单链DNA制备方法进行了比较和展望,以期能为成功筛选各类靶标的核酸适配体提供参考。展开更多
Recombineering is an essential tool for molecular biologists,allowing for the facile and efficient manipulation of bacterial genomes directly in cells without the need for costly and laborious in vitro manipulations i...Recombineering is an essential tool for molecular biologists,allowing for the facile and efficient manipulation of bacterial genomes directly in cells without the need for costly and laborious in vitro manipulations involving restriction enzymes.The main workhorses behind recombineering are bacteriophage proteins that promote the single-strand annealing(SSA)homologous recombination pathway to repair double-stranded DNA breaks.While there have been several reviews examining recombineering methods and applications,comparatively few have focused on the mechanisms of the proteins that are the key players in the SSA pathway:a 5′→3′exonuclease and a single-strand annealing protein(SSAP or“annealase”).This review dives into the structures and functions of the two SSA recombination systems that were the first to be developed for recombineering in E.coli:the RecET system from E.coli Rac prophage and the𝜆Red system from bacteriophageλ.By comparing the structures of the RecT and Red𝛽annealases,and the RecE and𝜆Exo exonucleases,we provide new insights into how the structures of these proteins dictate their function.Examining the sequence conservation of the𝜆λExo and RecE exonucleases gives more profound insights into their critical functional features.Ultimately,as recombineering accelerates and evolves in the laboratory,a better understanding of the mechanisms of the proteins behind this powerful technique will drive the development of improved and expanded capabilities in the future.展开更多
Prime editing(PE)is a versatile genome editing tool without the need for double-stranded DNA breaks or donor DNA templates,but is limited by low editing efficiency.We previously fused the M-MLV reverse transcriptase t...Prime editing(PE)is a versatile genome editing tool without the need for double-stranded DNA breaks or donor DNA templates,but is limited by low editing efficiency.We previously fused the M-MLV reverse transcriptase to the Cas9 nickase,generating the PE2(v1)system,but the editing efficiency of this system is still low.Here we develop different versions of PE2 by adding the 50-to-30 exonuclease at different positions of the nCas9-M-MLV RT fusion protein.PE2(v2),in which the T5 exonuclease fused to the N-terminus of the nCas9-MMLV fusion protein enhances prime editing efficiency of base substitutions,deletions,and insertions at several genomic sites by 1.7-to 2.9-fold in plant cells compared to PE2(v1).The improved editing efficiency of PE2(v2)is further confirmed by generating increased heritable prime edits in stable transgenic plants compared to the previously established PE-P1,PE-P2,and PPE systems.Using PE2(v2),we generate herbicide-resistant rice by simultaneously introducing mutations causing amino acid substitutions at two target sites.The PE efficiency is further improved by combining PE2(v2)and dualpegRNAs.Taken together,the increased genome editing efficiency of PE2(v2)developed in this study may enhance the applications of PE in plants.展开更多
基金Supported by The Science and Technology Project of General Administration of Quality Supervision,Inspection and Quarantine (2015IK126)The Science and Technology Project of Changsha City of Hunan Province of China (KQ1602124).
文摘Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly formation of a trivalent G-quadruplex/hemin DNAzyme for colorimetric detection of Hg^(2+).A hairpin DNA(Hr)was designed with thymine-Hg^(2+)-thymine pairs that catalyzed by Exo III is prompted to happen upon binding Hg^(2+).A released DNA fragment triggers the catalytic assembly of other three hairpins(H1,H2,and H3)to form many trivalent G-quadruplex/hemin DNA enzymes for signal output.The developed sensor shows a dynamic range from 2 pM to 2μM,with an impressively low detection limit of 0.32 pM for Hg^(2+)detection.Such a sensor also has good selectivity toward Hg^(2+)detection in the presence of other common metal ions.This strategy shows the great potential for visual detection with portable type.
基金This project was supported by grants from National Natu ral Science Foundation of China (No. 20107002,20377017).
文摘A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A double-stranded DNA fragment containing two binding sites was designed and incubated with the aryl hydrocarbon receptor (AhR) transformed by 2,3,7,8-tetrachlorodibenzo-p dioxin (TCDD) to generate TCDD:AhR:DNA complex which could protect receptor-binding DNA against exonuclease Ⅲ (Exo Ⅲ) digestion. With ExoⅢ treatment, free DNAs were digested and receptor-bound DNAs remained that could be amplified by PCR. By agarose gel electrophoreses a clear band (285bp) was detected using TCDD-treated sample, while nothing with control samples. To detect transformed AhR-DRE complex, 2 fmol DNAs and 3 ug cytosol proteins were found to be sufficient in the experiment. Compared with gel retardation assay, this new method is more sensitive for monitoring the Ah receptor-enhancer interaction without radioactive pollution.
文摘核酸适配体是人工合成的短链核酸,作为分子识别元件,能够与各类靶标物质高特异性、高亲和力的结合,分为单链DNA和RNA两种类型。其中单链DNA适配体由于其稳定性比RNA适配体更好而更受欢迎,因此得到广泛应用。核酸适配体筛选通常是通过配体指数富集系统进化技术(systematic evolution of ligands by exponential enrichment,SELEX)实现的,筛选能否成功在很大程度上取决于其最关键的单链制备步骤,即将双链DNA转化为相应的单链DNA。目前,存在许多方法可以制备单链DNA,包括热变性法、生物素-链霉亲和素亲和分离法、变性胶电泳分离法、核酸外切酶消化法、不对称聚合酶链式反应(polymerase chain reaction,PCR)法等。本文在总结文献报道的基础上,具体阐述了各种单链DNA制备方法的原理、优缺点及近5年的应用情况,并对这些单链DNA制备方法进行了比较和展望,以期能为成功筛选各类靶标的核酸适配体提供参考。
基金the National Science Foundation Grant MCB-2212951(to CEB)and NHMRC Ideas grant APP1184012/GNT1184012(to GT).
文摘Recombineering is an essential tool for molecular biologists,allowing for the facile and efficient manipulation of bacterial genomes directly in cells without the need for costly and laborious in vitro manipulations involving restriction enzymes.The main workhorses behind recombineering are bacteriophage proteins that promote the single-strand annealing(SSA)homologous recombination pathway to repair double-stranded DNA breaks.While there have been several reviews examining recombineering methods and applications,comparatively few have focused on the mechanisms of the proteins that are the key players in the SSA pathway:a 5′→3′exonuclease and a single-strand annealing protein(SSAP or“annealase”).This review dives into the structures and functions of the two SSA recombination systems that were the first to be developed for recombineering in E.coli:the RecET system from E.coli Rac prophage and the𝜆Red system from bacteriophageλ.By comparing the structures of the RecT and Red𝛽annealases,and the RecE and𝜆Exo exonucleases,we provide new insights into how the structures of these proteins dictate their function.Examining the sequence conservation of the𝜆λExo and RecE exonucleases gives more profound insights into their critical functional features.Ultimately,as recombineering accelerates and evolves in the laboratory,a better understanding of the mechanisms of the proteins behind this powerful technique will drive the development of improved and expanded capabilities in the future.
基金supported by grants from the National Key Research and Development Program of China(2022YFF1002802)the National Natural Science Foundation of China(32170410)the Science and Technology Innovation Young Talent Team of Shanxi Province(202204051001019).
文摘Prime editing(PE)is a versatile genome editing tool without the need for double-stranded DNA breaks or donor DNA templates,but is limited by low editing efficiency.We previously fused the M-MLV reverse transcriptase to the Cas9 nickase,generating the PE2(v1)system,but the editing efficiency of this system is still low.Here we develop different versions of PE2 by adding the 50-to-30 exonuclease at different positions of the nCas9-M-MLV RT fusion protein.PE2(v2),in which the T5 exonuclease fused to the N-terminus of the nCas9-MMLV fusion protein enhances prime editing efficiency of base substitutions,deletions,and insertions at several genomic sites by 1.7-to 2.9-fold in plant cells compared to PE2(v1).The improved editing efficiency of PE2(v2)is further confirmed by generating increased heritable prime edits in stable transgenic plants compared to the previously established PE-P1,PE-P2,and PPE systems.Using PE2(v2),we generate herbicide-resistant rice by simultaneously introducing mutations causing amino acid substitutions at two target sites.The PE efficiency is further improved by combining PE2(v2)and dualpegRNAs.Taken together,the increased genome editing efficiency of PE2(v2)developed in this study may enhance the applications of PE in plants.