在偏序集上引入测度拓扑和全测度概念,研究其性质以及与其它内蕴拓扑间的众多关系。主要结果有:连续偏序集的测度拓扑实际上是由其上的任一全测度所决定且可由它的定向完备化上的测度拓扑和全测度分别限制得到;当连续偏序集还是D om a i...在偏序集上引入测度拓扑和全测度概念,研究其性质以及与其它内蕴拓扑间的众多关系。主要结果有:连续偏序集的测度拓扑实际上是由其上的任一全测度所决定且可由它的定向完备化上的测度拓扑和全测度分别限制得到;当连续偏序集还是D om a in时,其上的测度拓扑与μ拓扑一致;连续偏序集有可数基当且仅当其上的测度拓扑是可分的;一个网如果测度收敛则存在最终上确界;任一ω连续偏序集上都存在全测度。展开更多
文摘在偏序集上引入测度拓扑和全测度概念,研究其性质以及与其它内蕴拓扑间的众多关系。主要结果有:连续偏序集的测度拓扑实际上是由其上的任一全测度所决定且可由它的定向完备化上的测度拓扑和全测度分别限制得到;当连续偏序集还是D om a in时,其上的测度拓扑与μ拓扑一致;连续偏序集有可数基当且仅当其上的测度拓扑是可分的;一个网如果测度收敛则存在最终上确界;任一ω连续偏序集上都存在全测度。