According to the conjecture based on some known facts of integrable models, a new (2+1)-dimensional supersymmetric integrable bilinear system is proposed. The model is not only the extension of the known (2+1)-d...According to the conjecture based on some known facts of integrable models, a new (2+1)-dimensional supersymmetric integrable bilinear system is proposed. The model is not only the extension of the known (2+1)-dimensional negative Kadomtsev-Petviashvili equation but also the extension of the known (1+1)-dimensional supersymmetric Boussinesq equation. The infinite dimensional Kac-Moody-Virasoro symmetries and the related symmetry reductions of the model are obtained. Furthermore, the traveling wave solutions including soliton solutions are explicitly presented.展开更多
How does the strong force shape the structure of atomic nuclei- The STAR collaboration at the BNL Relativistic Heavy Ion Collider(RHIC) demonstrate that ultra-relativistic collision experiments give key insights into ...How does the strong force shape the structure of atomic nuclei- The STAR collaboration at the BNL Relativistic Heavy Ion Collider(RHIC) demonstrate that ultra-relativistic collision experiments give key insights into this fundamental question. From dedicated measurements in ^(238)U+^(238)U collisions at 100 GeV/nucleon energy, the STAR collaboration determine the deformed shape of the ^(238)U nucleus, showing in particular that the experimental observables probe the elusive ground-state triaxiality of this isotope. These results pave the way to systematic characterizations of ground-state nuclear properties at high-energy colliders.展开更多
Parity-Time(PT)symmetry is an emerging concept in quantum mechanics where non-Hermitian Hamiltonians can exhibit real eigenvalues.Now,PT symmetric optical microresonators have been demonstrated to break the bandwidth-...Parity-Time(PT)symmetry is an emerging concept in quantum mechanics where non-Hermitian Hamiltonians can exhibit real eigenvalues.Now,PT symmetric optical microresonators have been demonstrated to break the bandwidth-efficiency limit for nonlinear optical signal processing.展开更多
The conditions for the emergence of the non-Hermitian skin effect, as a unique physical response of non-Hermitian systems, have now become one of the hot research topics. In this paper, we study the novel physical res...The conditions for the emergence of the non-Hermitian skin effect, as a unique physical response of non-Hermitian systems, have now become one of the hot research topics. In this paper, we study the novel physical responses of nonHermitian systems with anomalous time-reversal symmetry, in both one dimension and two dimensions. Specifically, we focus on whether the systems will exhibit a non-Hermitian skin effect. We employ the theory of generalized Brillouin zone and also numerical methods to show that the anomalous time-reversal symmetry can prevent the skin effect in onedimensional non-Hermitian systems, but is unable to exert the same effectiveness in two-dimensional cases.展开更多
By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of ...By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.展开更多
Based on the substitution rule and symmetry, we propose a method to generate an octagonal quasilattice consisting ofsquare and rhombus tiles. Local configurations and Ammann lines are used to guide the growth of the t...Based on the substitution rule and symmetry, we propose a method to generate an octagonal quasilattice consisting ofsquare and rhombus tiles. Local configurations and Ammann lines are used to guide the growth of the tiles in a quasiperiodicorder. The structure obtained is a perfect eight-fold symmetric quasilattice, which is confirmed by the radial distributionfunction and the diffraction pattern.展开更多
The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momen...The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.展开更多
The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, ...The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, the modulation of the intertwined electronic orders by the chemical doping is significant to illuminate the cooperation/competition between multiple phases in kagome superconductors. In this study, we have synthesized a series of tantalum-substituted Cs(V_(1-x)Ta_(x))_(3)Sb_(5) by a modified self-flux method. Electrical transport measurements reveal that CDW is suppressed gradually and becomes undetectable as the doping content of x is over 0.07. Concurrently, the superconductivity is enhanced monotonically from T_(c) ~ 2.8 K at x = 0 to 5.2 K at x = 0.12. Intriguingly, in the absence of CDW, Cs(V_(1-x)Ta_(x))_(3)Sb_(5)(x = 0.12) crystals exhibit a pronounced two-fold symmetry of the in-plane angular-dependent magnetoresistance(AMR) in the superconducting state, indicating the anisotropic superconducting properties in the Cs(V_(1-x)Ta_(x))_(3)Sb_(5). Our findings demonstrate that Cs(V_(1-x)Ta_(x))_(3)Sb_(5) with the non-trivial band topology is an excellent platform to explore the superconductivity mechanism and intertwined electronic orders in quantum materials.展开更多
We investigate the electronic structure of NbGeSb with non-symmorphic symmetry.We employ angle-resolved photoemission spectroscopy(ARPES)to observe and identify the bulk and surface states over the Brillouin zone.By u...We investigate the electronic structure of NbGeSb with non-symmorphic symmetry.We employ angle-resolved photoemission spectroscopy(ARPES)to observe and identify the bulk and surface states over the Brillouin zone.By utilizing high-energy photons,we identify the bulk Fermi surface and bulk nodal line along the direction X–R,while the Fermi surface of the surface state is observed by using low-energy photons.We observe the splitting of surface bands away from the high-symmetry point X.The density functional theory calculations on bulk and 1 to 5-layer slab models,as well as spin textures of NbGeSb,verify that the band splitting could be attributed to the Rashba-like spin–orbit coupling caused by space-inversion-symmetry breaking at the surface.These splitted surface bands cross with each other,forming two-dimensional Weyl-like crossings that are protected by mirror symmetry.Our findings provide insights into the two-dimensional topological and symmetry-protected band inversion of surface states.展开更多
Starting with a decomposition conjecture,we carefully explain the basic decompositions for the Kadomtsev-Petviashvili(KP)equation as well as the necessary calculation procedures,and it is shown that the KP equation al...Starting with a decomposition conjecture,we carefully explain the basic decompositions for the Kadomtsev-Petviashvili(KP)equation as well as the necessary calculation procedures,and it is shown that the KP equation allows the Burgers-STO(BSTO)decomposition,two types of reducible coupled BSTO decompositions and the BSTO-KdV decomposition.Furthermore,we concentrate ourselves on pointing out the main idea and result of Bäcklund transformation of the KP equation based on a special superposition principle in the particular context of the BSTO decompositions.Using the framework of standard Lie point symmetry theory,these decompositions are studied and the problem of computing the corresponding symmetry constraints is treated.展开更多
Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symm...Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symmetry reduction and the infinite series symmetry reduction solutions of the perturbed KS equation are constructed. Specially, if selecting the tanh-type travelling wave solution as initial approximate, we not only obtain the general formula of the physical approximate similarity solutions, but also obtain several new explicit solutions of the given equation, which are first reported here.展开更多
The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the K...The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.展开更多
We study two-lane totally asymmetric simple exclusion processes(TASEPs)with an intersection.Monte Carlo simulations show that only symmetric phases exist in the system.To verify the existence of asymmetric phases,we c...We study two-lane totally asymmetric simple exclusion processes(TASEPs)with an intersection.Monte Carlo simulations show that only symmetric phases exist in the system.To verify the existence of asymmetric phases,we carry out a cluster mean-field analysis.Analytical results show that the densities of the two upstream segments of the intersection site are always equal,which indicates that the system is not in asymmetric phases.It demonstrates that the spontaneous symmetry breaking does not exist in the system.The density profiles and the boundaries of the symmetric phases are also investigated.We find that the cluster mean-field analysis shows better agreement with simulations than the simple mean-field analysis where the correlation of sites is ignored.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10735030)the Scientific Research Fund of Zhejiang Provincial Education Department (Grant No. 20040969)+1 种基金the National Basic Research Programs of China (Grant Nos. 2007CB814800 and 2005CB422301)the PCSIRT (IRT0734)
文摘According to the conjecture based on some known facts of integrable models, a new (2+1)-dimensional supersymmetric integrable bilinear system is proposed. The model is not only the extension of the known (2+1)-dimensional negative Kadomtsev-Petviashvili equation but also the extension of the known (1+1)-dimensional supersymmetric Boussinesq equation. The infinite dimensional Kac-Moody-Virasoro symmetries and the related symmetry reductions of the model are obtained. Furthermore, the traveling wave solutions including soliton solutions are explicitly presented.
文摘How does the strong force shape the structure of atomic nuclei- The STAR collaboration at the BNL Relativistic Heavy Ion Collider(RHIC) demonstrate that ultra-relativistic collision experiments give key insights into this fundamental question. From dedicated measurements in ^(238)U+^(238)U collisions at 100 GeV/nucleon energy, the STAR collaboration determine the deformed shape of the ^(238)U nucleus, showing in particular that the experimental observables probe the elusive ground-state triaxiality of this isotope. These results pave the way to systematic characterizations of ground-state nuclear properties at high-energy colliders.
文摘Parity-Time(PT)symmetry is an emerging concept in quantum mechanics where non-Hermitian Hamiltonians can exhibit real eigenvalues.Now,PT symmetric optical microresonators have been demonstrated to break the bandwidth-efficiency limit for nonlinear optical signal processing.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12304201)。
文摘The conditions for the emergence of the non-Hermitian skin effect, as a unique physical response of non-Hermitian systems, have now become one of the hot research topics. In this paper, we study the novel physical responses of nonHermitian systems with anomalous time-reversal symmetry, in both one dimension and two dimensions. Specifically, we focus on whether the systems will exhibit a non-Hermitian skin effect. We employ the theory of generalized Brillouin zone and also numerical methods to show that the anomalous time-reversal symmetry can prevent the skin effect in onedimensional non-Hermitian systems, but is unable to exert the same effectiveness in two-dimensional cases.
基金The Project supported by the Natural Science Foundation of Shandong Province of China under Grant No.Q2005A01
文摘By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.
基金the National Natural Science Foun-dation of China(Grant No.11674102)。
文摘Based on the substitution rule and symmetry, we propose a method to generate an octagonal quasilattice consisting ofsquare and rhombus tiles. Local configurations and Ammann lines are used to guide the growth of the tiles in a quasiperiodicorder. The structure obtained is a perfect eight-fold symmetric quasilattice, which is confirmed by the radial distributionfunction and the diffraction pattern.
基金supported by the National Natural Science Foundation of China(No.11935001)the Natural Science Foundation of Anhui Province(No.2008085MA26).
文摘The exploration of spin symmetry (SS) in nuclear physics has been instrumental in identifying atomic nucleus structures.In this study,we solve the Dirac equation from the relativistic mean field (RMF) in complex momentum representation.We investigated SS and its breaking in single-particle resonant states within deformed nuclei,with a focus on the illustrative nucleus168Er.This was the initial discovery of a resonant spin doublet in a deformed nucleus,with the expectation of the SS approaching the continuum threshold.With increasing single-particle energy,the splitting of the resonant spin doublets widened significantly.This escalating splitting implies diminishing adherence to the SS,indicating a departure from the expected behavior as the energy levels increase.We also analyzed the width of the resonant states,showing that lower orbital angular momentum resonances possess shorter decay times and that SS is preserved within broad resonant doublets,as opposed to narrow resonant doublets.Comparing the radial density of the upper components for the bound-state and resonant-state doublets,it becomes evident that while SS is well-preserved in the bound states,it deteriorates in the resonant states.The impact of nuclear deformation (β_(2)) on SS was examined,demonstrating that an increase in β_(2) resulted in higher energy and width splitting in the resonant spin doublets,which is attributed to increased component mixing.Furthermore,the sensitivity of spin doublets to various potential parameters such as surface diffuseness (a),radius (R),and depth (Σ0) is discussed,emphasizing the role of these parameters in SS.This study provides valuable insights into the behavior of spin doublets in deformed nuclei and their interplay with the nuclear structure,thereby advancing our understanding of SS in the resonance state.
基金Project supported by the National Key R&D Program of China(Grant No.2022YFA1204100)the National Natural Science Foundation of China(Grant No.62488201)+1 种基金the Chinese Academy of Sciences(Grant Nos.XDB33030000,ZDBS-SSW-WHC001,YSBR-003,and YSBR-053)Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘The kagome superconductor CsV_(3)Sb_(5) has attracted widespread attention due to its rich correlated electron states including superconductivity, charge density wave(CDW), nematicity, and pair density wave. Notably, the modulation of the intertwined electronic orders by the chemical doping is significant to illuminate the cooperation/competition between multiple phases in kagome superconductors. In this study, we have synthesized a series of tantalum-substituted Cs(V_(1-x)Ta_(x))_(3)Sb_(5) by a modified self-flux method. Electrical transport measurements reveal that CDW is suppressed gradually and becomes undetectable as the doping content of x is over 0.07. Concurrently, the superconductivity is enhanced monotonically from T_(c) ~ 2.8 K at x = 0 to 5.2 K at x = 0.12. Intriguingly, in the absence of CDW, Cs(V_(1-x)Ta_(x))_(3)Sb_(5)(x = 0.12) crystals exhibit a pronounced two-fold symmetry of the in-plane angular-dependent magnetoresistance(AMR) in the superconducting state, indicating the anisotropic superconducting properties in the Cs(V_(1-x)Ta_(x))_(3)Sb_(5). Our findings demonstrate that Cs(V_(1-x)Ta_(x))_(3)Sb_(5) with the non-trivial band topology is an excellent platform to explore the superconductivity mechanism and intertwined electronic orders in quantum materials.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1403803)H.M.is supported by the Fundamental Research Funds for the Central Universities,and the Research Funds of Renmin University of China(Grant No.22XNH099)+7 种基金The results of DFT calculations described in this paper are supported by HPC Cluster of ITP-CAS.M.L.is supported by the National Natural Science Foundation of China(Grant No.12204536)the Fundamental Research Funds for the Central Universities,and the Research Funds of People’s Public Security University of China(PPSUC)(Grant No.2023JKF02ZK09)T.L.X.is supported by the National Key R&D Program of China(Grant No.2019YFA0308602)the National Natural Science Foundation of China(Grant Nos.12074425 and 11874422)Y.Y.W.is supported by the National Natural Science Foundation of China(Grant No.12104011)H.Y.L.is supported by the National Natural Science Foundation of China(Grant No.12074213)the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province.
文摘We investigate the electronic structure of NbGeSb with non-symmorphic symmetry.We employ angle-resolved photoemission spectroscopy(ARPES)to observe and identify the bulk and surface states over the Brillouin zone.By utilizing high-energy photons,we identify the bulk Fermi surface and bulk nodal line along the direction X–R,while the Fermi surface of the surface state is observed by using low-energy photons.We observe the splitting of surface bands away from the high-symmetry point X.The density functional theory calculations on bulk and 1 to 5-layer slab models,as well as spin textures of NbGeSb,verify that the band splitting could be attributed to the Rashba-like spin–orbit coupling caused by space-inversion-symmetry breaking at the surface.These splitted surface bands cross with each other,forming two-dimensional Weyl-like crossings that are protected by mirror symmetry.Our findings provide insights into the two-dimensional topological and symmetry-protected band inversion of surface states.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12235007, 11975131, and 12275144)the K. C. Wong Magna Fund in Ningbo Universitythe Natural Science Foundation of Zhejiang Province of China (Grant No. LQ20A010009)
文摘Starting with a decomposition conjecture,we carefully explain the basic decompositions for the Kadomtsev-Petviashvili(KP)equation as well as the necessary calculation procedures,and it is shown that the KP equation allows the Burgers-STO(BSTO)decomposition,two types of reducible coupled BSTO decompositions and the BSTO-KdV decomposition.Furthermore,we concentrate ourselves on pointing out the main idea and result of Bäcklund transformation of the KP equation based on a special superposition principle in the particular context of the BSTO decompositions.Using the framework of standard Lie point symmetry theory,these decompositions are studied and the problem of computing the corresponding symmetry constraints is treated.
基金The project supported by National Natural Science Foundations of China under Grant Nos. 10735030, 10475055, and 90503006; the Natural Science Research Plan in Shaanxi Province under Grant No. SJ08A09; the Research Fund of Postdoctoral of China under Grant No. 20070410727;the Research Found of Shaanxi Normal University
文摘Starting from Lie symmetry theory and combining with the approximate symmetry method, and using the package LieSYMGRP proposed by us, we restudy the perturbed Kuramoto-Sivashinsky (KS) equation. The approximate symmetry reduction and the infinite series symmetry reduction solutions of the perturbed KS equation are constructed. Specially, if selecting the tanh-type travelling wave solution as initial approximate, we not only obtain the general formula of the physical approximate similarity solutions, but also obtain several new explicit solutions of the given equation, which are first reported here.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022 and 12147213)。
文摘The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.
基金Project supported by the National Natural Science Foundation of China(Grant No.11802003).
文摘We study two-lane totally asymmetric simple exclusion processes(TASEPs)with an intersection.Monte Carlo simulations show that only symmetric phases exist in the system.To verify the existence of asymmetric phases,we carry out a cluster mean-field analysis.Analytical results show that the densities of the two upstream segments of the intersection site are always equal,which indicates that the system is not in asymmetric phases.It demonstrates that the spontaneous symmetry breaking does not exist in the system.The density profiles and the boundaries of the symmetric phases are also investigated.We find that the cluster mean-field analysis shows better agreement with simulations than the simple mean-field analysis where the correlation of sites is ignored.