期刊文献+
共找到145篇文章
< 1 2 8 >
每页显示 20 50 100
Nonlinear Jordan Higher Derivations of Triangular Algebras 被引量:4
1
作者 Fu Wen-lian Xiao Zhan-kui Du Xian-kun 《Communications in Mathematical Research》 CSCD 2015年第2期119-130,共12页
In this paper, we prove that any nonlinear Jordan higher derivation on triangular algebras is an additive higher derivation. As a byproduct, we obtain that any nonlinear Jordan derivation on nest algebras over infinit... In this paper, we prove that any nonlinear Jordan higher derivation on triangular algebras is an additive higher derivation. As a byproduct, we obtain that any nonlinear Jordan derivation on nest algebras over infinite dimensional Hilbert suaces is inner. 展开更多
关键词 nonlinear Jordan higher derivation triangular algebra nest algebra
下载PDF
Nonlinear Jordan Triple Derivations of Triangular Algebras 被引量:1
2
作者 Hongxia Li 《Advances in Linear Algebra & Matrix Theory》 2014年第4期205-209,共5页
In this paper, it is proved that every nonlinear Jordan triple derivation on triangular algebra is an additive derivation.
关键词 NONLINEAR JORDAN TRIPLE derivationS triangular algebras derivation
下载PDF
Certain Pair of Derivations on a Triangular Algebra 被引量:2
3
作者 GUO YING LI XIA +1 位作者 MA JING Du Xian-kun 《Communications in Mathematical Research》 CSCD 2014年第3期265-272,共8页
By using properties of triangular algebra, we prove that if derivations D and G on a triangular algebra T satisfy certain generalized identities, then both D and G are zero mappings. As a corollary we get that if D an... By using properties of triangular algebra, we prove that if derivations D and G on a triangular algebra T satisfy certain generalized identities, then both D and G are zero mappings. As a corollary we get that if D and G are cocentralizing on T, then both D and G are zero mappings. 展开更多
关键词 triangular algebra derivation cocentralizing the Engel condition
下载PDF
Jordan Higher Derivable Maps on Triangular Algebras by Commutative Zero Products 被引量:7
4
作者 Dan LIU Jian Hua ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第2期258-264,共7页
In this paper, the structure of Jordan higher derivable maps on triangular algebras by commutative zero products is given. As an application, the form of Jordan higher derivable maps of nest algebras by commutative ze... In this paper, the structure of Jordan higher derivable maps on triangular algebras by commutative zero products is given. As an application, the form of Jordan higher derivable maps of nest algebras by commutative zero products is obtained. 展开更多
关键词 triangular algebra Jordan higher derivable map commutative zero product
原文传递
CHARACTERIZATION OF DERIVATIONS ON B(X) BY LOCAL ACTIONS
5
作者 薛天娇 安润玲 侯晋川 《Acta Mathematica Scientia》 SCIE CSCD 2017年第3期668-678,共11页
Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B... Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B = P, here A o B = AB + BA is the usual Jordan product. In this article, we show that if ,A = AlgAN is a Hilbert space nest Mgebra and M = B(H), or A =M= B(X), then, a linear mapδ: A→M is Jordan derivable at a nontrivial projection P ∈ N or an arbitrary but fixed nontrivial idempotent P∈ B(X) if and only if it is a derivation. New equivalent characterization of derivations on these operator algebras was obtained. 展开更多
关键词 derivationS triangular algebras subspace lattice algebras Jordan derivable maps
下载PDF
*-Lie Derivable Mappings on Von Neumann Algebras 被引量:1
6
作者 Changjing Li Quanyuan Chen Ting Wang 《Communications in Mathematics and Statistics》 SCIE 2016年第1期81-92,共12页
In this paper,we prove that every*-Lie derivable mapping on a von Neu-mann algebra with no central abelian projections can be expressed as the sum of anadditive*-derivation and a mapping with image in the center vanis... In this paper,we prove that every*-Lie derivable mapping on a von Neu-mann algebra with no central abelian projections can be expressed as the sum of anadditive*-derivation and a mapping with image in the center vanishing at commuta-tors. 展开更多
关键词 *-lie derivable mapping derivation Von Neumann algebra
原文传递
Characterizations of(m, n)-Jordan Derivations and(m, n)-Jordan Derivable Mappings on Some Algebras
7
作者 Guang Yu AN Jun HE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第3期378-390,共13页
Let R be a ring, M be a R-bimodule and m, n be two fixed nonnegative integers with m + n = 0. An additive mapping δ from R into M is called an(m, n)-Jordan derivation if(m +n)δ(A^2) = 2 mAδ(A) + 2nδ(A)A for every ... Let R be a ring, M be a R-bimodule and m, n be two fixed nonnegative integers with m + n = 0. An additive mapping δ from R into M is called an(m, n)-Jordan derivation if(m +n)δ(A^2) = 2 mAδ(A) + 2nδ(A)A for every A in R. In this paper, we prove that every(m, n)-Jordan derivation with m = n from a C*-algebra into its Banach bimodule is zero. An additive mappingδ from R into M is called a(m, n)-Jordan derivable mapping at W in R if(m + n)δ(AB + BA) =2mδ(A)B + 2 mδ(B)A + 2 nAδ(B) + 2 nBδ(A) for each A and B in R with AB = BA = W. We prove that if M is a unital A-bimodule with a left(right) separating set generated algebraically by all idempotents in A, then every(m, n)-Jordan derivable mapping at zero from A into M is identical with zero. We also show that if A and B are two unital algebras, M is a faithful unital(A, B)-bimodule and U = [A M N B] is a generalized matrix algebra, then every(m, n)-Jordan derivable mapping at zero from U into itself is equal to zero. 展开更多
关键词 (m n)-Jordan derivation (m n)-Jordan derivable mapping C^*-algebra generalized matrix algebra
原文传递
Characterizing Centralizers and Generalized Derivations on Triangular Algebras by Acting on Zero Product 被引量:8
8
作者 Xiao Fei QI Jin Chuan HOU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第7期1245-1256,共12页
Let U = Tri(fit, M, B) be a triangular ring, where A and B are unital rings, and M is a faithful (A, B)-bimodule. It is shown that an additive map φ on U is centralized at zero point (i.e., ,φ(A)B = A,φ(B)... Let U = Tri(fit, M, B) be a triangular ring, where A and B are unital rings, and M is a faithful (A, B)-bimodule. It is shown that an additive map φ on U is centralized at zero point (i.e., ,φ(A)B = A,φ(B) = 0 whenever AB = 0) if and only if it is a centralizer. Let 5 : U →U be an additive map. It is also shown that the following four conditions are equivalent: (1) 5 is specially generalized derivable at zero point, i.e., 5(AB) = δ(A)B + AS(B) - Aδ(I)B whenever AB = 0; (2) 5 is generalized derivable at zero point, i.e., there exist additive maps τ1 and τ2 on U derivable at zero point such that δ(AB) = δ(A)B + Aτ1(B) = τ2(A)B + Aδ(B) whenever AB = 0; (3) δ is a special generalized derivation; (4) δ is a generalized derivation. These results are then applied to nest algebras of Banach space 展开更多
关键词 triangular rings Banach spaces nest algebras CENTRALIZERS generalized derivations
原文传递
Additive Lie (ξ-Lie) Derivations and Generalized Lie (ξ-Lie) Derivations on Prime Algebras 被引量:3
9
作者 Xiao Fei QI Jin Chuan HOU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第2期383-392,共10页
The additive (generalized) ξ-Lie derivations on prime algebras are characterized. It is shown, under some suitable assumptions, that an additive map L is an additive generalized Lie derivation if and only if it is ... The additive (generalized) ξ-Lie derivations on prime algebras are characterized. It is shown, under some suitable assumptions, that an additive map L is an additive generalized Lie derivation if and only if it is the sum of an additive generalized derivation and an additive map from the algebra into its center vanishing all commutators; is an additive (generalized) E-Lie derivation with ξ -if and only if it is an additive (generalized) derivation satisfying L(ξA) =- ξL(A) for all A. These results are then used to characterize additive (generalized) ξ-Lie derivations on several operator Mgebras such as Banach space standard operator algebras and yon Neumman algebras. 展开更多
关键词 Prime algebras ξ-lie derivations generalized ξ-lie derivations
原文传递
Local Jordan Derivations and Local Jordan Automorphisms of Upper Triangular Matrix Algebras 被引量:1
10
作者 Yan Xia ZHAO Rui Ping YAO Deng Yin WANG 《Journal of Mathematical Research and Exposition》 CSCD 2010年第3期465-474,共10页
Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and t... Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and that every local Jordan automorphism of Tn(R) is a Jordan automorphism. As applications, we show that local derivations and local automorphisms of Tn (R) are inner. 展开更多
关键词 local Jordan derivations local Jordan automorphisms local derivations localautomorphisms upper triangular matrix algebras.
下载PDF
Characterization of Lie Higher Derivations on Triangular Algebras
11
作者 Xiao Fei QI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第5期1007-1018,共12页
Let A and B be unital rings, and M be an (A, B)-bimodule, which is faithful as a left A-module and also as a right B-module. Let U = Tri(A,M, B) be the triangular algebra. In this paper, we give some different cha... Let A and B be unital rings, and M be an (A, B)-bimodule, which is faithful as a left A-module and also as a right B-module. Let U = Tri(A,M, B) be the triangular algebra. In this paper, we give some different characterizations of Lie higher derivations on U. 展开更多
关键词 triangular algebras Lie higher derivations higher derivations
原文传递
Local derivation on triangular subalgebras of hyperfinite von Neumann algebras
12
作者 JI Peisheng Department of Mathematics, Shandong University, Jinan 250100, China 《Chinese Science Bulletin》 SCIE EI CAS 1998年第9期716-719,共4页
It is proved that every σ-weakly continuous local derivation from triangular subalgebra A of hyperfinite von Neumann algebra B into A (or B) is a derivation. Morevoer, if A is also a σ-Dirichlet subalgebra, each loc... It is proved that every σ-weakly continuous local derivation from triangular subalgebra A of hyperfinite von Neumann algebra B into A (or B) is a derivation. Morevoer, if A is also a σ-Dirichlet subalgebra, each local derivation from A into A is an inner derivation. 展开更多
关键词 hyperfinite von NEUMANN algebra triangular algebra derivation local derivation INNER derivation.
全文增补中
Generalized*-Lie Higher Derivable Mappings on*-Rings
13
作者 Mohammad Ashraf Mohd Shuaib Akhtar Bilal Ahmad Wani 《Algebra Colloquium》 SCIE CSCD 2020年第3期415-432,共18页
Let R be a*-ring with the center Z(R)and N be the set of nonnegative integers.In this paper,it is shown that if R contains a nontrivial self-adjoint idempotent which admits a generalized Lie higher derivable mapping△... Let R be a*-ring with the center Z(R)and N be the set of nonnegative integers.In this paper,it is shown that if R contains a nontrivial self-adjoint idempotent which admits a generalized Lie higher derivable mapping△={G_(n)}_(n∈N)associated with a*-Lie higher derivable mapping L={L_(n)}_(n∈N),then for any X,Y in R and for each n in N there exists an element Z_(X,Y)(depending on X and Y)in the center Z(R)such that G_(n)(X+Y)=G_(n)(X)+G_(n)(Y)+Z_(X,Y). 展开更多
关键词 RINGS derivations *-lie higher derivable mappings generalized*-lie higher derivable mappings
原文传递
Lie Triple Derivations of the Lie Algebra of Dominant Block Upper Triangular Matrices
14
作者 Prakash Ghimire Huajun Huang 《Algebra Colloquium》 SCIE CSCD 2018年第3期475-492,共18页
Let N be the Lie algebra of all n x n dominant block upper triangular matrices over a field F. In this paper, we explicitly describe all Lie triple derivations of N when char(F) ≠ 2. As an application, we character... Let N be the Lie algebra of all n x n dominant block upper triangular matrices over a field F. In this paper, we explicitly describe all Lie triple derivations of N when char(F) ≠ 2. As an application, we characterize Lie derivations of N when char(F) ≠ 2. 展开更多
关键词 Lie triple derivation block upper triangular matrix Lie algebra
原文传递
广义矩阵代数上的一类非线性局部可导映射
15
作者 侯习武 张建华 《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期29-34,共6页
设G=G(A,M,N,B)是一个广义矩阵代数,∅:G→G是一个映射(无可加性假设).利用代数分解的方法,证明:如果对任意的X,Y∈G,且X和Y至少有一个是幂等元时,∅(XY)=∅(X)Y+X∅(Y)成立,则∅是G上的可加导子.
关键词 局部可导映射 导子 广义矩阵代数
下载PDF
三角代数上的零点ξ-Lie可导映射 被引量:3
16
作者 李彩红 张建华 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期15-19,共5页
研究了三角代数上的零点ξ-Lie可导映射,证明了三角代数U上的每一个零点ξ-Lie(ξ≠1)可导映射δ都具有形式T→d(T)+δ(I)T,其中d:U→U是一个可加导子.作为应用,得到:上三角块矩阵代数T上的零点ξ-Lie(ξ≠1)可导映射具有形式T→TS-ST+... 研究了三角代数上的零点ξ-Lie可导映射,证明了三角代数U上的每一个零点ξ-Lie(ξ≠1)可导映射δ都具有形式T→d(T)+δ(I)T,其中d:U→U是一个可加导子.作为应用,得到:上三角块矩阵代数T上的零点ξ-Lie(ξ≠1)可导映射具有形式T→TS-ST+Td+λT,其中S∈T,λ∈F,d是F上的可加导子且Td=(d(tij));套代数AlgN上的零点ξ-Lie(ξ≠1)可导映射具有形式T→TS-ST+λT,其中S∈AlgN,λ∈F. 展开更多
关键词 三角代数 ξ-lie可导映射 可加导子
下载PDF
三角代数上的ξ-Lie可导映射 被引量:1
17
作者 黄美愿 张建华 《纺织高校基础科学学报》 CAS 2012年第1期33-36,共4页
设U=Tri(A,M,B)是含单位元I的三角代数并且φ:U→U是线性映射.利用代数分解的方法,证明了当三角代数U满足适当条件时,如果U,V∈U且UV=VU=I,有φ([U,V]ξ)=[φ(U),V]ξ+[U,φ(V)]ξ(ξ≠±1),则φ是导子.并得到了套代数上ξ-Lie可... 设U=Tri(A,M,B)是含单位元I的三角代数并且φ:U→U是线性映射.利用代数分解的方法,证明了当三角代数U满足适当条件时,如果U,V∈U且UV=VU=I,有φ([U,V]ξ)=[φ(U),V]ξ+[U,φ(V)]ξ(ξ≠±1),则φ是导子.并得到了套代数上ξ-Lie可导映射的一个刻画. 展开更多
关键词 ξ-lie可导映射 三角代数 导子
下载PDF
三角代数上部分ξ-Lie可导映射的刻画
18
作者 黄美愿 张建华 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期20-22,共3页
运用代数分解方法研究了三角代数U=Tri(A,M,B)上的部分ξ-Lie可导映射.证明了如果对任意A∈A存在整数k使得kIA-A可逆,则U上的线性映射为导子当且仅当它是部分ξ-Lie可导映射.作为应用,证明了非平凡套代数上的线性映射是内导子当且仅当... 运用代数分解方法研究了三角代数U=Tri(A,M,B)上的部分ξ-Lie可导映射.证明了如果对任意A∈A存在整数k使得kIA-A可逆,则U上的线性映射为导子当且仅当它是部分ξ-Lie可导映射.作为应用,证明了非平凡套代数上的线性映射是内导子当且仅当其为部分ξ-Lie可导映射. 展开更多
关键词 部分ξ-lie可导映射 三角代数 导子
下载PDF
三角代数上的Jordan零点高阶ξ-Lie可导映射
19
作者 柳静 张建华 《吉林大学学报(理学版)》 CAS 北大核心 2021年第3期475-481,共7页
设U=Tri(A,M,B)是一个2-无扰的三角代数,{φn}n∈N,是U上的一列线性映射.用代数分解方法证明:如果对任意n∈N,U,V∈U且U V=0,有φn([U,V]ξ)=∑i+j=n[φi(U),φj(V)]ξ,ξ≠0,±1,则{φn}n∈N,是一个高阶导子,其中[U,V]ξ=UV-ξVU为... 设U=Tri(A,M,B)是一个2-无扰的三角代数,{φn}n∈N,是U上的一列线性映射.用代数分解方法证明:如果对任意n∈N,U,V∈U且U V=0,有φn([U,V]ξ)=∑i+j=n[φi(U),φj(V)]ξ,ξ≠0,±1,则{φn}n∈N,是一个高阶导子,其中[U,V]ξ=UV-ξVU为ξ-Lie积,U°V=UV+VU为Jordan积.并得到套代数上Jordan零点高阶ξ-Lie可导映射的具体形式. 展开更多
关键词 三角代数 高阶ξ-lie可导映射 ξ-lie
下载PDF
三角代数上的局部广义李n导子
20
作者 袁鹤 俞慧玲 田莹 《西北师范大学学报(自然科学版)》 CAS 北大核心 2023年第5期24-28,34,共6页
利用恒等式理论,证明了在一定条件下,三角代数T上的局部广义李n导子δ可以表示为δ=G+h,其中G:T→T为广义导子,h:T→Z(T)满足:对于任意的x_(1),x_(2),…,x_(n)∈T,有h(p_(n)(x_(1),x_(2),…,x_(n)))=0,其中pn为(n-1)-交换子.最后给出了... 利用恒等式理论,证明了在一定条件下,三角代数T上的局部广义李n导子δ可以表示为δ=G+h,其中G:T→T为广义导子,h:T→Z(T)满足:对于任意的x_(1),x_(2),…,x_(n)∈T,有h(p_(n)(x_(1),x_(2),…,x_(n)))=0,其中pn为(n-1)-交换子.最后给出了上述结果的一个应用. 展开更多
关键词 局部广义李n导子 三角代数 广义导子 李n导子 恒等式理论
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部