-
题名Fourier变换的加权模不等式(英文)
- 1
-
-
作者
楼红卫
-
机构
宁波大学数学系
-
出处
《宁波大学学报(理工版)》
CAS
1990年第1期7-16,共10页
-
文摘
给定 p,q 满足1<p≤2,1<q≤p′,B.Muckenhoupt 提出了如何特征地刻划非负函数 u(x),使加权不等式(∫_(R^n)|(?)(x)|~qu(x)dx)^(1/q)≤C‖f‖_p对任何 f 成立,其中(?)表示 f 的 Fourier 变换。本文证明了上述问题等价于特征地刻划非负函数 u(x),使不等式:((?)|a_h|~q∫_(E_k^r)u(x)dx)^(1/q)≤Cr^(n/p′)(∫_[-n,n]~n|(?)(a_k(?)e^(ikmxm))|~pdx)^(1/p)对任何 r>0及(有限)数列{a_k}成立,其中,k=(k_1,k_2,…,k_n),E_k^r是立方体{x=(x_1,x_2,…,x_n):k_mr≤x_m<(k_m+1)r,m=1,2,…,n}。本文还考虑了 Fourier 变换的弱型加权模不等式,给出了一必要条件。作为应用,我们给出了 Fonrier 级数的L^p[-π,π]范数估计。
-
关键词
FOURIER
变换
加权模不等式
Fourier级数的L^p[-π
π]范数
-
Keywords
Fourier transform
weighted norm inequalities
L^p[-π,π]norm of Fourier seriers
-
分类号
O
[理学]
-