期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
π正则环的圈乘半群
1
作者 杜现昆 杨轶华 《吉林大学自然科学学报》 CAS CSCD 北大核心 2001年第3期35-37,共3页
证明 π正则环的圈乘半群是 π正则半群 .
关键词 π正则环 圈乘半群 π正则半群
下载PDF
半交换π-正则环的结构
2
作者 卢建伟 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2008年第4期365-368,共4页
引入了准体的概念,并用它刻画了半交换π-正则环的结构.证明了若R是半交换环,则下面条件是等价的:(1)R是π-正则环.(2)R的每个素理想均为极大理想.(3)R/PE(P)为准体,其中P为R的任意素理想,E(P)为P的所有幂等元素组成的集合.(4)P1,P2为R... 引入了准体的概念,并用它刻画了半交换π-正则环的结构.证明了若R是半交换环,则下面条件是等价的:(1)R是π-正则环.(2)R的每个素理想均为极大理想.(3)R/PE(P)为准体,其中P为R的任意素理想,E(P)为P的所有幂等元素组成的集合.(4)P1,P2为R的两个素理想,若E(P1)=E(P2),则有P1=P2.并进一步证明了半交换π-正则环R同构于诸准体{R/PE(P)}的一个亚直接和,P∈M,M为R的所有素理想组成的集合. 展开更多
关键词 半交换π正则环 幂等元素 准素理想 准体 准无零因子
下载PDF
关于(I,k)-正则环
3
作者 叶建芳 《杭州师范大学学报(自然科学版)》 CAS 2011年第6期535-538,共4页
给出了(I,k)-正则环的概念及其等价刻画,研究了它的性质,并对(I,k)-正则环和I-半π正则环之间以及(I,k)-正则环和(I,k+1)-正则环的关系进行了探究.
关键词 (I k)-正则 强提升 n×n阶上三角矩阵 I-半π正则环
下载PDF
Extensions of strongly π-regular general rings
4
作者 王周 陈建龙 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期309-312,共4页
The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- reg... The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- regular general rings are provided. It is shown that I is strongly π-regular if and only if, for each x ∈I, x^n =x^n+1y = zx^n+1 for n ≥ 1 and y, z ∈ I if and only if every element of I is strongly π-regular. It is also proved that every upper triangular matrix general ring over a strongly π-regular general ring is strongly π-regular and the trivial extension of the strongly π-regular general ring is strongly clean. 展开更多
关键词 strongly π-regular general ring strongly clean general ring upper triangular matrix general ring trivial extension
下载PDF
A Note on the π- regularity of Rings
5
作者 陈焕艮 《Chinese Quarterly Journal of Mathematics》 CSCD 1998年第2期67-71, ,共5页
In this paper,we investigate unitπ regularity and strongly π regularity. We show that every corner ring eRe inherits the unit π regularity from a ring R. We also generalize some important characterizations of abeli... In this paper,we investigate unitπ regularity and strongly π regularity. We show that every corner ring eRe inherits the unit π regularity from a ring R. We also generalize some important characterizations of abelian regular rings to π regular rings and describe strongly π regular rings by virtue of group members. 展开更多
关键词 unit π-regularity strongly π-regularity group members
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部