This is the second paper in a series following Tian and Xu(2015), on the construction of a mathematical theory of the gauged linear σ-model(GLSM). In this paper, assuming the existence of virtual moduli cycles and th...This is the second paper in a series following Tian and Xu(2015), on the construction of a mathematical theory of the gauged linear σ-model(GLSM). In this paper, assuming the existence of virtual moduli cycles and their certain properties, we define the correlation function of GLSM for a fixed smooth rigidified r-spin curve.展开更多
The authors introduce concepts of even and odd additive functionals and prove that an even martingale continuous additive functional of a symmetric Markov process vanishes identically.A representation for symmetric s...The authors introduce concepts of even and odd additive functionals and prove that an even martingale continuous additive functional of a symmetric Markov process vanishes identically.A representation for symmetric super-martingale multiplicative functionals are also given.展开更多
基金supported by National Science Foundation of USA(Grant No.DMS-1309359)National Natural Science Foundation of China(Grant No.11331001)
文摘This is the second paper in a series following Tian and Xu(2015), on the construction of a mathematical theory of the gauged linear σ-model(GLSM). In this paper, assuming the existence of virtual moduli cycles and their certain properties, we define the correlation function of GLSM for a fixed smooth rigidified r-spin curve.
基金Project supported by the National Natural Science Foundation of China.
文摘The authors introduce concepts of even and odd additive functionals and prove that an even martingale continuous additive functional of a symmetric Markov process vanishes identically.A representation for symmetric super-martingale multiplicative functionals are also given.