Objective:To determine the distribution,phenotypic and genetic background of extended spectrumβ-lactamases(ESBL)-producing Klebsiella(K.)pneumoniae clinical isolates associated with K1 and K2 serotypes in two selecte...Objective:To determine the distribution,phenotypic and genetic background of extended spectrumβ-lactamases(ESBL)-producing Klebsiella(K.)pneumoniae clinical isolates associated with K1 and K2 serotypes in two selected hospitals in Malaysia.Methods:A total of 192 K.pneumoniae isolates were collected and subjected to antibiotic susceptibility,hypermucoviscosity test and multiplex PCR to detect the presence of K1-and K2-serotype associated genes.Multilocus sequence typing(MLST)was performed on ESBL-producing K.pneumoniae isolates presented with K1 and K2 serotypes,followed by phylogenetic analysis.Results:A total of 87 out of 192(45.3%)of the K.pneumoniae isolates collected were ESBL producers.However,only 8.3%(16/192)and 10.9%(21/192)of the total isolates were detected to carry K1-and K2-serotype associated genes,respectively.Statistical analysis showed that K1 and K2 capsular serotypes were not significantly associated with ESBL phenotype(P=0.196).However,they were significantly associated with hypervirulent,as demonstrated by the positive string test(P<0.001).MLST analysis revealed that ST23 as the predominant sequence type(ST)in the K1 serotype,while the ST in the K2 serotype is more diverse.Conclusions:Although the occurrence of ESBL-producing isolates among the hypervirulent strains was low,their coexistence warrants the need for continuous surveillance.MLST showed that these isolates were genetically heterogeneous.展开更多
With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutan...With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutants.In this work,to overcome the drawbacks of the photocatalytic activity reduction caused by the photo-corrosion of non-stoichiometric BiO_(2–x),a novel material with amorphous FeOOH in situ grown on layered BiO_(2–x) to form a core-shell structure similar to popcorn chicken-like morphology was produced in two simple and environmentally beneficial steps.Through a series of degradation activity tests of hybrid materials under different conditions,the as-prepared materials exhibited remarkable degradation activity and stability toward tetracycline in the FeOOH@BiO_(2–x)/Vis/PS system due to the synergism of photocatalysis and persulfate activation.The results of XRD,SEM,TEM,XPS,FTIR,and BET show that the loading of FeOOH increases the specific surface area and active sites appreciably;the heterogeneous structure formed by FeOOH and BiO_(2–x) is more favorable to the effective separation of photogenerated carriers.The optimal degradation conditions were at a catalyst addition of 0.7 g·L^(–1),a persulfate concentration of 1.0 g·L^(–1),and an initial pH of 4.5,at which the degradation rate could reach 94.7%after 90 min.The influence of typical inorganic anions on degradation was also examined.ESR studies and radical quenching experiments revealed that·OH,SO_(4)^(-)·,and·O_(2)^(-)were the principal active species generated during the degradation of tetracycline.The results of the 1,10-phenanthroline approach proved that the effect of dissolved iron ions on the tetracycline degradation was limited,and the interfacial reaction that occurs on the active sites on the material's surface was a critical factor.This work provides a novel method for producing efficient broad-spectrum Bismuth-based composite photocatalysts and photocatalytic-activated persulfate synergistic degradation of tetracycline.展开更多
基金supported by the Ministry of Higher Education under the Fundamental Research Grant Scheme(FRGS/1/2021/SKK0/UPM/02/8)the Universiti Putra Malaysia Research University Grant Scheme(GP/IPS/2021/9702000).
文摘Objective:To determine the distribution,phenotypic and genetic background of extended spectrumβ-lactamases(ESBL)-producing Klebsiella(K.)pneumoniae clinical isolates associated with K1 and K2 serotypes in two selected hospitals in Malaysia.Methods:A total of 192 K.pneumoniae isolates were collected and subjected to antibiotic susceptibility,hypermucoviscosity test and multiplex PCR to detect the presence of K1-and K2-serotype associated genes.Multilocus sequence typing(MLST)was performed on ESBL-producing K.pneumoniae isolates presented with K1 and K2 serotypes,followed by phylogenetic analysis.Results:A total of 87 out of 192(45.3%)of the K.pneumoniae isolates collected were ESBL producers.However,only 8.3%(16/192)and 10.9%(21/192)of the total isolates were detected to carry K1-and K2-serotype associated genes,respectively.Statistical analysis showed that K1 and K2 capsular serotypes were not significantly associated with ESBL phenotype(P=0.196).However,they were significantly associated with hypervirulent,as demonstrated by the positive string test(P<0.001).MLST analysis revealed that ST23 as the predominant sequence type(ST)in the K1 serotype,while the ST in the K2 serotype is more diverse.Conclusions:Although the occurrence of ESBL-producing isolates among the hypervirulent strains was low,their coexistence warrants the need for continuous surveillance.MLST showed that these isolates were genetically heterogeneous.
基金supported by the National Key Research and Development Program of China(2019YFC1904100)the National Natural Science Foundation of China(21503144)+3 种基金the Science and Technology Innovation Project for Students of Hebei Province(22E50174D)the Science and Technology Project of Hebei Education Department(QN2021047)the Program of Hebei Vocational University of Industry and Technology(dxs202207,ZY202401)the Key Program of Natural Science of Hebei Province(B2020209017).
文摘With the growing concern about the water environment,the advanced oxidation process of persulfate activation assisted by photocatalysis has attracted considerable attention to decompose dissolved organic micropollutants.In this work,to overcome the drawbacks of the photocatalytic activity reduction caused by the photo-corrosion of non-stoichiometric BiO_(2–x),a novel material with amorphous FeOOH in situ grown on layered BiO_(2–x) to form a core-shell structure similar to popcorn chicken-like morphology was produced in two simple and environmentally beneficial steps.Through a series of degradation activity tests of hybrid materials under different conditions,the as-prepared materials exhibited remarkable degradation activity and stability toward tetracycline in the FeOOH@BiO_(2–x)/Vis/PS system due to the synergism of photocatalysis and persulfate activation.The results of XRD,SEM,TEM,XPS,FTIR,and BET show that the loading of FeOOH increases the specific surface area and active sites appreciably;the heterogeneous structure formed by FeOOH and BiO_(2–x) is more favorable to the effective separation of photogenerated carriers.The optimal degradation conditions were at a catalyst addition of 0.7 g·L^(–1),a persulfate concentration of 1.0 g·L^(–1),and an initial pH of 4.5,at which the degradation rate could reach 94.7%after 90 min.The influence of typical inorganic anions on degradation was also examined.ESR studies and radical quenching experiments revealed that·OH,SO_(4)^(-)·,and·O_(2)^(-)were the principal active species generated during the degradation of tetracycline.The results of the 1,10-phenanthroline approach proved that the effect of dissolved iron ions on the tetracycline degradation was limited,and the interfacial reaction that occurs on the active sites on the material's surface was a critical factor.This work provides a novel method for producing efficient broad-spectrum Bismuth-based composite photocatalysts and photocatalytic-activated persulfate synergistic degradation of tetracycline.