利用Melnikov方法分析了含有5次方项的Φ6-Duffing-Van der Pol(Φ6-DVP)系统在三势阱参数下发生混沌的必要条件。通过Poincaré截面图、分岔图、时间序列中的Lyapunov指数谱和Lyapunov维数等,较直观地反映振动系统随周期激励信号...利用Melnikov方法分析了含有5次方项的Φ6-Duffing-Van der Pol(Φ6-DVP)系统在三势阱参数下发生混沌的必要条件。通过Poincaré截面图、分岔图、时间序列中的Lyapunov指数谱和Lyapunov维数等,较直观地反映振动系统随周期激励信号强弱变化的动态特性,阐明了系统运动随周期激励信号强弱变化的动态特性、复杂性和系统的非线性特征,揭示了Φ6-DVP振子方程的分岔形式以及通向混沌运动的道路。结果表明:由于系统的混沌特性以及本身对称性,导致系统在通向混沌的道路上和较窄的混沌带中,对称地出现了多种类型的分岔形式。展开更多
The paper presents a novel exploration of π through a re-calculation of formulas using Archimedes’ algorithm, resulting in the identification of a general family equation and three new formulas involving the golden ...The paper presents a novel exploration of π through a re-calculation of formulas using Archimedes’ algorithm, resulting in the identification of a general family equation and three new formulas involving the golden ratio Φ, in the form of infinite nested square roots. Some related geometrical properties are shown, enhancing the link between the circle and the golden ratio. Applying the same criteria, a fourth formula is given, that brings to the known Dixon’s squaring the circle approximation, thus an easier approach to this problem is suggested, by a rectangle with both sides proportional to the golden ratio Φ.展开更多
文摘利用Melnikov方法分析了含有5次方项的Φ6-Duffing-Van der Pol(Φ6-DVP)系统在三势阱参数下发生混沌的必要条件。通过Poincaré截面图、分岔图、时间序列中的Lyapunov指数谱和Lyapunov维数等,较直观地反映振动系统随周期激励信号强弱变化的动态特性,阐明了系统运动随周期激励信号强弱变化的动态特性、复杂性和系统的非线性特征,揭示了Φ6-DVP振子方程的分岔形式以及通向混沌运动的道路。结果表明:由于系统的混沌特性以及本身对称性,导致系统在通向混沌的道路上和较窄的混沌带中,对称地出现了多种类型的分岔形式。
文摘The paper presents a novel exploration of π through a re-calculation of formulas using Archimedes’ algorithm, resulting in the identification of a general family equation and three new formulas involving the golden ratio Φ, in the form of infinite nested square roots. Some related geometrical properties are shown, enhancing the link between the circle and the golden ratio. Applying the same criteria, a fourth formula is given, that brings to the known Dixon’s squaring the circle approximation, thus an easier approach to this problem is suggested, by a rectangle with both sides proportional to the golden ratio Φ.