In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strateg...In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.展开更多
In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality...In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.展开更多
AIM:To analyze the distribution of refractive status in school-age children with different corneal curvatures(CC)and the correlation between CC and refractive status.METHODS:A total of 2214 school-aged children of gra...AIM:To analyze the distribution of refractive status in school-age children with different corneal curvatures(CC)and the correlation between CC and refractive status.METHODS:A total of 2214 school-aged children of grade 4 in Hangzhou who were screened for school myopia were included.Uncorrected distance visual acuity(UCDVA),non-cycloplegic refraction,axial length(AL),horizontal and vertical corneal curvature(K1,K2)were measured and spherical equivalent(SE),corneal curvature radius(CCR)and axial length/corneal radius of curvature ratio(AL/CR)were calculated.UCDVA<5.0 and SE≤-0.50 D were classified as school-screening myopia.According to the different CCRs,the patients were divided into the lower corneal curvature(LCC)group(CCR≥7.92)and the higher corneal curvature(HCC)group(CCR<7.92).Each group was further divided into the normal AL subgroup and the long AL subgroup.The refractive parameters were compared to identify any differences between the two groups.RESULTS:Both SE and AL were greater in the LCC group(P=0.013,P<0.001).The prevalence of myopia was 38% in the LCC group and 44% in the HCC group(P<0.001).The proportion of children without screening myopia was higher in the LCC group(62%)than in the HCC group(56%).Among these children without screening myopia,the proportion of long AL in the LCC group(24%)was significantly higher than that in the HCC group(0.012%;P<0.001).The change of SE in the LCC group was less affected by the increase of AL than that in the HCC group.CONCLUSION:School-aged children in the LCC group have a lower incidence of screening myopia and longer AL.Low CC can mask SE reduction and AL growth to some extent,and the change of AL growth change more in children with low CC than high CC.Before the onset of myopia,its growth rate is even faster than that after the onset of myopia.展开更多
To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the o...To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the object’s entire surface from multiple angles,enabling comprehensive full-surface measurement.To increase the stitching quality,a hierarchical coordinate matching method is proposed.Initially,a 3D rigid body calibration auxiliary block is employed to track motion trajectory,which enables preliminary matching of four 3D-DIC sub-systems.Subsequently,secondary precise matching is performed based on feature points on the test specimen’s surface.Through the hierarchical coordinate matching method,the local 3D coordinate systems of each double-camera system are unified into a global coordinate system,achieving 3D surface reconstruction of the variable curvature cylindrical shell,and error analysis is conducted on the results.Furthermore,axial compression buckling experiment is conducted to measure the displacement and strain fields on the cylindrical shell’s surface.The experimental results are compared with the finite element analysis,validating the accuracy and effectiveness of the proposed multi-camera 3D-DIC measuring system.展开更多
Let(M, F) be an n-dimensional Randers space with scalar flag curvature. In this paper, we will introduce the definition of a weak Einstein manifold. We can prove that if(M, F) is a weak Einstein manifold, then the fla...Let(M, F) be an n-dimensional Randers space with scalar flag curvature. In this paper, we will introduce the definition of a weak Einstein manifold. We can prove that if(M, F) is a weak Einstein manifold, then the flag curvature is constant.展开更多
In this paper,we study the asymptotic behavior of a class of inverse quotient curvature flow in the anti-de Sitter-Schwarzschild manifold.We prove that under suitable convex conditions for the initial hypersurface,one...In this paper,we study the asymptotic behavior of a class of inverse quotient curvature flow in the anti-de Sitter-Schwarzschild manifold.We prove that under suitable convex conditions for the initial hypersurface,one can get the long-time existence for the inverse curvature flow.Moreover,we also get that the principal curvatures of the evolving hypersurface converge to 1 when t→+∞.展开更多
Tissue curvature has long been recognized as an important anatomical parameter that affects intracellular behaviors,and there is emerging interest in applying cell-scale curvature as a designer property to drive cell ...Tissue curvature has long been recognized as an important anatomical parameter that affects intracellular behaviors,and there is emerging interest in applying cell-scale curvature as a designer property to drive cell fates for tissue engineering purposes.Although neural cells are known to undergo dramatic and terminal morphological changes during development and curvature-limiting behaviors have been demonstrated in neurite outgrowth studies,there are still crucial gaps in understanding neural cell behaviors,particularly in the context of a three-dimensional(3D)curvature landscape similar to an actual tissue engineering scaffold.In this study,we fabricated two substrates of microcurvature(curvature-substrates)that present a smooth and repeating landscape with focuses of either a concave or a convex pattern.Using these curvature-substrates,we studied the properties of morphological differentiation in N2a neuroblastoma cells.In contrast to other studies where two-dimensional(2D)curvature was demonstrated to limit neurite outgrowth,we found that both the concave and convex substrates acted as continuous and uniform mechanical protrusions that significantly enhanced neural polarity and differentiation with few morphological changes in the main cell body.This enhanced differentiation was manifested in various properties,including increased neurite length,increased nuclear displacement,and upregulation of various neural markers.By demonstrating how the micron-scale curvature landscape induces neuronal polarity,we provide further insights into the design of biomaterials utilizing the influence of surface curvature in neural tissue engineering.展开更多
The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroun...The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroundings.However,continuum robots possess theoretically infinite degrees of freedom,and this high flexibility usually leads to complex deformations when subjected to external forces and positional constraints.Describing these complex deformations is the main challenge in modeling continuum robots.In this study,we investigated a novel variable curvature modeling method for continuum robots,considering external forces and positional constraints.The robot configuration curve is described using the developed mechanical model,and then the robot is fitted to the curve.A ten-section continuum robot prototype with a length of 1 m was developed in order to validate the model.The feasibility and accuracy of the model were verified by the ability of the robot to reach target points and track complex trajectories with a load.This work was able to serve as a new perspective for the design analysis and motion control of continuum robots.展开更多
This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature ...This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature as well as reduce the influence of resistance-temperature dependency.Considering the degraded circuit performance caused by the process deviation,the trimmable module of the temperature coefficient(TC)is introduced to improve the circuit stability.The circuit has the advantages of simple structure,high linear stability,high TC accuracy,and trimmable TC.It consumes an area of 0.09 mm^(2)when fabricated by using the 0.25-μm complementary metal-oxide-semiconductor(CMOS)process.The proposed circuit achieves the simulated power supply rejection(PSR)of about-78.7 dB@1 kHz,the measured TC of~4.7 ppm/℃over a wide temperature range from-55℃to 125℃with the 2.5-V single-supply voltage,and the tested line regulation of 0.10 mV/V.Such a high-performance bandgap reference circuit can be widely applied in high-precision and high-reliability electronic systems.展开更多
A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing perfo...A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.展开更多
In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit posit...In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit positive constant C(n,p,λ),depending only on n,p,λ,such that,if∫MSn/2dM<∞,∫M(S−λ)n/2+dM<C(n,p,λ),then Mn is a totally geodetic sphere,where S denotes the square of the second fundamental form of the submanifold and∫+=max{0,f}.Similar conclusions can be obtained for a complete submanifold with parallel mean curvature in the Euclidean space Rn+p.展开更多
To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells...To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.展开更多
In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were con...In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were conducted based on three kinds of single and double curvature forming tools. The results show that the spingback rate would be the minimum under the optimal coupling conditions among the temperature, aging time and internal stress state of material. Difference exists in the two directions of the formed sample with double curvature, but the curvature variation keeps the same. Yield strength, ultimate tensile strength and fracture toughness of the double curvature formed sample appear to be higher than those of the single curvature formed sample under the same aging condition, but the elongation and the anisotropy are opposite.展开更多
A low voltage bandgap reference with curvature compensation is presented. Using current mode structure, the proposed bandgap circuit has a minimum voltage of 900mV. Compensated through the VEB linearization technique,...A low voltage bandgap reference with curvature compensation is presented. Using current mode structure, the proposed bandgap circuit has a minimum voltage of 900mV. Compensated through the VEB linearization technique, this bandgap reference can reach a temperature coefficient of 10ppmFC from 0 to 150℃. With a 1.1V supply voltage,the supply current is 43μA and the PSRR is 55dB at DC frequency. This bandgap reference has been verified in a UMC 0.18μm mixed mode CMOS technology and occupies 0. 186mm^2 of chip area.展开更多
To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including g...To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including groove geometry,effective stress distribution and plough force.The curled groove shape whose workpiece curvature was 0.133 mm-1 was validated by experiments.Moreover,a series of geometry models with various curvatures were introduced to analyze the change of groove deformation.The results show that positive curvatures influence groove deformation more intensively than negative or zero curvature.It is mainly due to the action of the tool forming face during plough process.展开更多
To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W...To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.展开更多
In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If the...In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If then M^n lies in a totally geodesic submanifold N^(n+1).展开更多
文摘In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.
基金Supported by the NSFC(11771087,12171091 and 11831005)。
文摘In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.
基金Supported by Key Research and Development Projects of Zhejiang Science and Technology Plan(No.2021C03103).
文摘AIM:To analyze the distribution of refractive status in school-age children with different corneal curvatures(CC)and the correlation between CC and refractive status.METHODS:A total of 2214 school-aged children of grade 4 in Hangzhou who were screened for school myopia were included.Uncorrected distance visual acuity(UCDVA),non-cycloplegic refraction,axial length(AL),horizontal and vertical corneal curvature(K1,K2)were measured and spherical equivalent(SE),corneal curvature radius(CCR)and axial length/corneal radius of curvature ratio(AL/CR)were calculated.UCDVA<5.0 and SE≤-0.50 D were classified as school-screening myopia.According to the different CCRs,the patients were divided into the lower corneal curvature(LCC)group(CCR≥7.92)and the higher corneal curvature(HCC)group(CCR<7.92).Each group was further divided into the normal AL subgroup and the long AL subgroup.The refractive parameters were compared to identify any differences between the two groups.RESULTS:Both SE and AL were greater in the LCC group(P=0.013,P<0.001).The prevalence of myopia was 38% in the LCC group and 44% in the HCC group(P<0.001).The proportion of children without screening myopia was higher in the LCC group(62%)than in the HCC group(56%).Among these children without screening myopia,the proportion of long AL in the LCC group(24%)was significantly higher than that in the HCC group(0.012%;P<0.001).The change of SE in the LCC group was less affected by the increase of AL than that in the HCC group.CONCLUSION:School-aged children in the LCC group have a lower incidence of screening myopia and longer AL.Low CC can mask SE reduction and AL growth to some extent,and the change of AL growth change more in children with low CC than high CC.Before the onset of myopia,its growth rate is even faster than that after the onset of myopia.
基金funded by the National Natural Science Foundations of China(Nos.12272176,U2037603).
文摘To achieve full-surface strain measurement of variable curvature objects,a 360°3D digital image correlation(DIC)system is proposed.The measurement system consists of four double-camera systems,which capture the object’s entire surface from multiple angles,enabling comprehensive full-surface measurement.To increase the stitching quality,a hierarchical coordinate matching method is proposed.Initially,a 3D rigid body calibration auxiliary block is employed to track motion trajectory,which enables preliminary matching of four 3D-DIC sub-systems.Subsequently,secondary precise matching is performed based on feature points on the test specimen’s surface.Through the hierarchical coordinate matching method,the local 3D coordinate systems of each double-camera system are unified into a global coordinate system,achieving 3D surface reconstruction of the variable curvature cylindrical shell,and error analysis is conducted on the results.Furthermore,axial compression buckling experiment is conducted to measure the displacement and strain fields on the cylindrical shell’s surface.The experimental results are compared with the finite element analysis,validating the accuracy and effectiveness of the proposed multi-camera 3D-DIC measuring system.
基金supported by the National Natural Science Foundation of China (11871405)。
文摘Let(M, F) be an n-dimensional Randers space with scalar flag curvature. In this paper, we will introduce the definition of a weak Einstein manifold. We can prove that if(M, F) is a weak Einstein manifold, then the flag curvature is constant.
基金supported by the Postdoctoral Fund of Zhejiang Province,China (ZJ2022004).
文摘In this paper,we study the asymptotic behavior of a class of inverse quotient curvature flow in the anti-de Sitter-Schwarzschild manifold.We prove that under suitable convex conditions for the initial hypersurface,one can get the long-time existence for the inverse curvature flow.Moreover,we also get that the principal curvatures of the evolving hypersurface converge to 1 when t→+∞.
基金supported by the Inter-Departmental Open Project of State Key Laboratory in Ultra-Precision Machining Technology(SKL-UPMT,No.P0033576).
文摘Tissue curvature has long been recognized as an important anatomical parameter that affects intracellular behaviors,and there is emerging interest in applying cell-scale curvature as a designer property to drive cell fates for tissue engineering purposes.Although neural cells are known to undergo dramatic and terminal morphological changes during development and curvature-limiting behaviors have been demonstrated in neurite outgrowth studies,there are still crucial gaps in understanding neural cell behaviors,particularly in the context of a three-dimensional(3D)curvature landscape similar to an actual tissue engineering scaffold.In this study,we fabricated two substrates of microcurvature(curvature-substrates)that present a smooth and repeating landscape with focuses of either a concave or a convex pattern.Using these curvature-substrates,we studied the properties of morphological differentiation in N2a neuroblastoma cells.In contrast to other studies where two-dimensional(2D)curvature was demonstrated to limit neurite outgrowth,we found that both the concave and convex substrates acted as continuous and uniform mechanical protrusions that significantly enhanced neural polarity and differentiation with few morphological changes in the main cell body.This enhanced differentiation was manifested in various properties,including increased neurite length,increased nuclear displacement,and upregulation of various neural markers.By demonstrating how the micron-scale curvature landscape induces neuronal polarity,we provide further insights into the design of biomaterials utilizing the influence of surface curvature in neural tissue engineering.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975566,61821005,U1908214)Key Research Program of Frontier Sciences,CAS,China(Grant No.ZDBS-LY-JSC011).
文摘The inherent compliance of continuum robots holds great promise in the fields of soft manipulation and safe human–robot interaction.This compliance reduces the risk of damage to the manipulated object and its surroundings.However,continuum robots possess theoretically infinite degrees of freedom,and this high flexibility usually leads to complex deformations when subjected to external forces and positional constraints.Describing these complex deformations is the main challenge in modeling continuum robots.In this study,we investigated a novel variable curvature modeling method for continuum robots,considering external forces and positional constraints.The robot configuration curve is described using the developed mechanical model,and then the robot is fitted to the curve.A ten-section continuum robot prototype with a length of 1 m was developed in order to validate the model.The feasibility and accuracy of the model were verified by the ability of the robot to reach target points and track complex trajectories with a load.This work was able to serve as a new perspective for the design analysis and motion control of continuum robots.
文摘This paper proposes an improved exponential curvature-compensated bandgap reference circuit to exploit the exponential relationship between the current gainβof the bipolar junction transistor(BJT)and the temperature as well as reduce the influence of resistance-temperature dependency.Considering the degraded circuit performance caused by the process deviation,the trimmable module of the temperature coefficient(TC)is introduced to improve the circuit stability.The circuit has the advantages of simple structure,high linear stability,high TC accuracy,and trimmable TC.It consumes an area of 0.09 mm^(2)when fabricated by using the 0.25-μm complementary metal-oxide-semiconductor(CMOS)process.The proposed circuit achieves the simulated power supply rejection(PSR)of about-78.7 dB@1 kHz,the measured TC of~4.7 ppm/℃over a wide temperature range from-55℃to 125℃with the 2.5-V single-supply voltage,and the tested line regulation of 0.10 mV/V.Such a high-performance bandgap reference circuit can be widely applied in high-precision and high-reliability electronic systems.
基金the National Natural Science Foundation of China(Grant No.61935007).
文摘A refractive index(RI)sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber(TC-NCF).The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF.The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43.The maximum wavelength sensitivity reaches 12400 nm/RIU,and the corresponding R^(2)of the polynomial fitting equation is 0.9999.The maximum and minimum resolutions are 2.56×10^(-5)and 8.06×10^(-6),respectively.In addition,the maximum amplitude sensitivity can reach-379.1 RIU^(-1)when the RI is chosen as 1.43.The proposed TC-NCF RI sensor could be useful in biochemical medicine,environmental monitoring,and food safety.
基金supported by the National Natural Science Foundation of China(11531012,12071424,12171423)the Scientific Research Project of Shaoxing University(2021LG016)。
文摘In this paper,we mainly study the global rigidity theorem of Riemannian submanifolds in space forms.Let Mn(n≥3)be a complete minimal submanifold in the unit sphere Sn+p(1).Forλ∈[0,n2−1/p),there is an explicit positive constant C(n,p,λ),depending only on n,p,λ,such that,if∫MSn/2dM<∞,∫M(S−λ)n/2+dM<C(n,p,λ),then Mn is a totally geodetic sphere,where S denotes the square of the second fundamental form of the submanifold and∫+=max{0,f}.Similar conclusions can be obtained for a complete submanifold with parallel mean curvature in the Euclidean space Rn+p.
基金supported jointly by one of the major projects of Basic and Applied Basic Research in Guangdong Province“Key Basic Theory Research for Natural Gas Hydrate Trial Production in Shenhu Pilot Test Area”(2020B0301030003)the project from Southern Marine Science&Engineering Guangdong Laboratory Guangzhou City“Research on New Closed Circulation Drilling Technology without Riser”(GML2019ZD0501)the special project for hydrate from China Geological Survey“Trial Production Implementation for Natural Gas Hydrate in Shenhu Pilot Test Area”(DD20190226)。
文摘To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.
基金Project(2010CB731700)supported by the National Basic Research Program of China
文摘In order to investigate the springback rules, the variation characteristics of physical property and microstructure in bending creep age forming process, a series of creep forming tests of 2124 aluminum alloy were conducted based on three kinds of single and double curvature forming tools. The results show that the spingback rate would be the minimum under the optimal coupling conditions among the temperature, aging time and internal stress state of material. Difference exists in the two directions of the formed sample with double curvature, but the curvature variation keeps the same. Yield strength, ultimate tensile strength and fracture toughness of the double curvature formed sample appear to be higher than those of the single curvature formed sample under the same aging condition, but the elongation and the anisotropy are opposite.
文摘A low voltage bandgap reference with curvature compensation is presented. Using current mode structure, the proposed bandgap circuit has a minimum voltage of 900mV. Compensated through the VEB linearization technique, this bandgap reference can reach a temperature coefficient of 10ppmFC from 0 to 150℃. With a 1.1V supply voltage,the supply current is 43μA and the PSRR is 55dB at DC frequency. This bandgap reference has been verified in a UMC 0.18μm mixed mode CMOS technology and occupies 0. 186mm^2 of chip area.
基金Project (U0834002) supported by the Key Program of NSFC-Guangdong Joint Funds of ChinaProject (51005079) supported by the National Natural Science Foundation of China+1 种基金Project (20100172120001) supported by Specialized Research Fund for the Doctoral Program of Higher Education, ChinaProject (10451064101005146) supported by the Natural Science Foundation of Guangdong Province,China
文摘To investigate the workpiece curvature influence on groove deformation,numerical studies with curvature varying from negative to positive were conducted on copper material.Groove deformations were analyzed,including groove geometry,effective stress distribution and plough force.The curled groove shape whose workpiece curvature was 0.133 mm-1 was validated by experiments.Moreover,a series of geometry models with various curvatures were introduced to analyze the change of groove deformation.The results show that positive curvatures influence groove deformation more intensively than negative or zero curvature.It is mainly due to the action of the tool forming face during plough process.
基金supported by the National Natural Science Foundation of China (No. 41004054) Research Fund for the Doctoral Program of Higher Education of China (No. 20105122120002)Natural Science Key Project, Sichuan Provincial Department of Education (No. 092A011)
文摘To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.
基金Supported by the National Natural Science Foundation of China(11071053)Natural Science Foundation of Hebei Province(A2014207010)+2 种基金Key Project of Science and Research of Hebei Educational Department(ZD2016024)Key Project of Science and Research of Hebei University of Economics and Business(2016KYZ07)the third author is supported by Science and Technology Foundation of Agricultural University of Hebei(LG201612)
文摘In the present paper we obtain the following result: Theorem Let M^R be a compact submanifold with parallel mean curvature vector in a locally symmetric and conformally flat Riemannian manifold N^(n+p)(p>1). If then M^n lies in a totally geodesic submanifold N^(n+1).