Signature verification involves vague situations in which a signature could resemble many reference samples ormight differ because of handwriting variances. By presenting the features and similarity score of signature...Signature verification involves vague situations in which a signature could resemble many reference samples ormight differ because of handwriting variances. By presenting the features and similarity score of signatures from thematching algorithm as fuzzy sets and capturing the degrees of membership, non-membership, and indeterminacy,a neutrosophic engine can significantly contribute to signature verification by addressing the inherent uncertaintiesand ambiguities present in signatures. But type-1 neutrosophic logic gives these membership functions fixed values,which could not adequately capture the various degrees of uncertainty in the characteristics of signatures. Type-1neutrosophic representation is also unable to adjust to various degrees of uncertainty. The proposed work exploresthe type-2 neutrosophic logic to enable additional flexibility and granularity in handling ambiguity, indeterminacy,and uncertainty, hence improving the accuracy of signature verification systems. Because type-2 neutrosophiclogic allows the assessment of many sources of ambiguity and conflicting information, decision-making is moreflexible. These experimental results show the possible benefits of using a type-2 neutrosophic engine for signatureverification by demonstrating its superior handling of uncertainty and variability over type-1, which eventuallyresults in more accurate False Rejection Rate (FRR) and False Acceptance Rate (FAR) verification results. In acomparison analysis using a benchmark dataset of handwritten signatures, the type-2 neutrosophic similaritymeasure yields a better accuracy rate of 98% than the type-1 95%.展开更多
HY-2A is the first one of the Chinese HY-2 ocean satellite series carrying a microwave radiometer(RM)to measure sea surface temperature,sea surface wind speed,atmospheric water vapor,cloud liquid water content,and rai...HY-2A is the first one of the Chinese HY-2 ocean satellite series carrying a microwave radiometer(RM)to measure sea surface temperature,sea surface wind speed,atmospheric water vapor,cloud liquid water content,and rain rate.We verified the RM level 1B brightness temperature(T B)to retrieve environmental parameters.In the verification,TB that simulated using the ocean-atmosphere radiative transfer model(RTM)was used as a reference.The total bias and total standard deviation(SD)of the RM level 1B TB,with reference to the RTM simulation,ranged-20.6-4.38 K and 0.7-2.93 K,respectively.We found that both the total bias and the total SD depend on the frequency and polarization,although the values for ascending and descending passes are different.In addition,substantial seasonal variation of the bias was found at all channels.The verification results indicate the RM has some problems regarding calibration,e.g.,correction of antenna spillover and antenna physical emission,especially for the 18.7-GHz channel.Based on error analyses,a statistical recalibration algorithm was designed and recalibration was performed for the RM level 1B TB.Validation of the recalibrated TB indicated that the quality of the recalibrated RM level 1B TB was improved significantly.The bias of the recalibrated T B at all channels was reduced to<0.4 K,seasonal variation was almost eradicated,and SD was diminished(i.e.,the SD of the 18.7-GHz channel was reduced by more than 0.5K).展开更多
Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal ex...Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal experiments.Methods:Chemical components for each drug in the Juanbi capsule were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,while the target proteins for knee osteoarthritis were retrieved from the Drugbank,GeneCards,and OMIM databases.The study compared information on knee osteoarthritis and the targets of drugs to identify common elements.The data was imported into the STRING platform to generate a protein-protein interaction network diagram.Subsequently,a“component-target”network diagram was created using the screened drug components and target information with Cytoscape software.Common targets were imported into Metascape for GO function and KEGG pathway enrichment analysis.AutoDockTools was utilized to predict the molecular docking of the primary chemical components and core targets.Ultimately,the key targets were validated through animal experiments.Results:Juanbi capsule ameliorated Knee osteoarthritis mainly by affecting tumor necrosis factor,interleukin1β,MMP9,PTGS2,VEGFA,TP53,and other cytokines through quercetin,kaempferol,andβ-sitosterol.The drug also influenced the AGE-RAGE,interleukin-17,tumor necrosis factor,Relaxin,and NF-κB signaling pathways.The network pharmacology analysis results were further validated in animal experiments.The results indicated that Juanbi capsule could decrease the levels of tumor necrosis factor-αand interleukin-1βin the serum and synovial fluid of knee osteoarthritis rats and also down-regulate the expression levels of MMP9 and PTGS2 proteins in the articular cartilage.Conclusion:Juanbi capsule may improve the knee bone microstructure and reduce the expression of inflammatory factors of knee osteoarthritis via multiple targets and multiple signaling pathways.展开更多
Anthropogenic Nitrogen oxides(NO_(x)=NO_(2)+NO)emissions are highly concentrated in urban area,and the weekly cycles,seasonal patterns and long-term trends of tropospheric NO_(2) columns over cities differ from region...Anthropogenic Nitrogen oxides(NO_(x)=NO_(2)+NO)emissions are highly concentrated in urban area,and the weekly cycles,seasonal patterns and long-term trends of tropospheric NO_(2) columns over cities differ from region to region due to different emission sectoral compositions and human activities.In this study,we used satellite observed tropospheric NO_(2) column data to compare the longand short-term NO_(2) column density time series over cities in the United Sates(the U.S.),western Europe and China.The results showed that in all the targeted cities,the outbreak of the Corona Virus Disease in 2019(COVID-19)moved the December peak of the city-level NO_(2)columns forward to November and October or even earlier in 2020 and 2021.On weekly level,cities in the U.S.show the lowest NO_(2) columns ratio on weekend/work day,then come the western European cities,and a weak weekly pattern is seen in Chinese cities.For all the cites,we find a higher weekend/work day NO_(2) ratio in cold seasons than in warm seasons,indicating a higher contribution from NOx emission sectors of residential,industry and power plants in the warm seasons.In the long-term,NO_(2) columns over the U.S.and western European cities declined by a fraction twice that of the regional mean level from 2004 to 2021.In China,NO_(2) columns started to decrease since 2012,at a similar rate between the city and regional level.This work confirms the importance to quantify and control NOx emissions from cities.展开更多
The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estima...The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estimate the ‘logic loophole' of this technique. The finite-width effect and unpredictable errors reduce the technique's reliability, which leads to this loophole. Based on imaging theory, the photos of a virtual camera are simulated by integrating the assumed luminous intensity of plasma. Based on Hommen's theory, the plasma optical boundary is reconstructed from the photos. Comparing the reconstructed boundary with the one assumed, the logic loophole and its two effects are quantitatively estimated. The finite-width effect is related to the equivalent thickness of the luminous layer, which is generally about 2-4 cm but sometimes larger. The level of unpredictable errors is around 0.65 cm. The technique based on Hommen's theory is generally reliable, but finite-width effect and unpredictable errors have to be taken into consideration in some scenarios. The parameters of HL-2M are applied in this work.展开更多
This paper presents the techniques of implicit traversing and state verification for sequential finite state machines(FSMs) based of on the state collapsing of state transition graph(STG). The problems of state design...This paper presents the techniques of implicit traversing and state verification for sequential finite state machines(FSMs) based of on the state collapsing of state transition graph(STG). The problems of state designing are described. In order to achieve high state enumeration coverage, heuristic knowledge is proposed.展开更多
Formal verification is fundamental in many phases of digital systems design. The most successful verification procedures employ Ordered Binary Decision Diagrams (OBDDs) as canonical representation for both Boolean cir...Formal verification is fundamental in many phases of digital systems design. The most successful verification procedures employ Ordered Binary Decision Diagrams (OBDDs) as canonical representation for both Boolean circuit specifications and logic designs, but these methods require a large amount of memory and time. Due to these limitations, several models of Decision Diagrams have been studied and other verification techniques have been proposed. In this paper, we have used probabilistic verification with Galois (or finite) field GF(2m) modifying the CUDD package for the computation of signatures in classical OBDDs, and for the construction of Mod2-OBDDs (also known as ?-OBDDs). Mod2-OBDDs have been constructed with a two-level layer of ?-nodes using a positive Davio expansion (pDE) for a given variable. The sizes of the Mod2-OBDDs obtained with our method are lower than the Mod2-OBDDs sizes obtained with other similar methods.展开更多
In order to reduce the oxidation and volatilization caused by Mg element in the traditional methods for synthesizing Mg2Si compounds,Mg2Si thermoelectric materials were prepared by solid state reaction and microwave r...In order to reduce the oxidation and volatilization caused by Mg element in the traditional methods for synthesizing Mg2Si compounds,Mg2Si thermoelectric materials were prepared by solid state reaction and microwave radiation techniques.Structure and phase composition of the materials were investigated by X-ray diffraction.The electrical conductivity,Seebeck coefficient and thermal conductivity were measured as a function of temperature from 300 to 700 K.It is found that high purity Mg2Si powders can be obtained with excessive content of 8% Mg from the stoichiometric Mg2Si at 853 K and 2.5 kW for 30 min.A maximum dimensionless figure of merit,ZT,of about 0.13 was obtained for Mg2Si at 600 K.展开更多
Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction tem...Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction temperature and reaction time of SH route, and the calcination temperature of SSR route on the purity, particle morphology and electrochemical properties of the prepared LiMn2O4 materials were studied. The experimental results show that after 15 min reaction in SH route at 400 ℃ and 30 MPa, the reaction time of SSR could be significantly decreased, e.g. down to 3 h with the formation temperature of 800 ℃, compared with the conventional solid state reaction method. The prepared LiMn2O4 material exhibits good crystallinity, uniform size distribution and good electrochemical performance, and has an initial specific capacity of 120 mA.h/g at a rate of 0.1C (1C=148 mA/g) and a good rate capability at high rates, even up to 50C.展开更多
The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE...The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE) technique has become the third pillar of detonation research, along with theory and experiment, due to the detonation phenomenon is difficult to explain by the theoretical analysis, and the cost required to accredit the reliability of detonation products is very high, even some physical experiments of detonation are impossible. The numerical simulation technique can solve these complex problems in the real situation repeatedly and reduce the design cost and time stunningly. But the reliability of numerical simulation software and the serviceability of the computational result seriously hinders the extension, application and the self-restoration of the simulation software, restricts its independently innovational ability. This article deals with the physical modeling, numerical simulation, and software development of detonation in a unified way. Verification and validation and uncertainty quantification (V&V&UQ) is an important approach in ensuring the credibility of the modeling and simulation of detonation. V&V of detonation is based on our independently developed detonation multiphysics software-LAD2D. We propose the verification method based on mathematical theory and program function as well as availability of its program execution. Validation is executed by comparing with the experiment data. At last, we propose the future prospect of numerical simulation software and the CAE technique, and we also pay attention to the research direction of V&V&UQ.展开更多
High valence state species are significant in the energy-relevant electrochemical oxidation reactions.Herein,the high active state of Ni^(3+)formation induced by Mo^(6+)and their efficient synergism in NiS_(2)-MoS_(2)...High valence state species are significant in the energy-relevant electrochemical oxidation reactions.Herein,the high active state of Ni^(3+)formation induced by Mo^(6+)and their efficient synergism in NiS_(2)-MoS_(2)hetero-nanorods powder catalyst with the rough layered structure are demonstrated,as proof of concept,for the urea-assisted water electrolysis.This catalyst can be derived from the sulfidation of NiMoO_(4) nanorods that can realize individual metal sulfides sufficiently mixing at a domain size in the nanoscale which creates lots of active sites and nanointerfaces.The high valence state of Mo^(6+)and Ni^(3+)formation and increased conductive phase of 1 T MoS_(2)in the hetero-nanorods compared to the counterpart pure phases are revealed by spectral study and microscopic analysis;high electrochemical surface area and active site exposure are found due to the nano-interface formation and layered rough nanosheets over the surface of nanorods.They show much higher catalytic performance than their pure phases for urea oxidation,including high catalytic activity,stability,charge transfer ability and catalytic kinetics resulting from more active Ni^(3+)species formation and electronic synergism of high valence metals.Transformation of 1 T MoS_(2)to Mo^(6+)and increased amount of Mo^(6+)and Ni^(3+)after stability test indicate their involvement and synergism for the catalysis reaction.The current work offers a novel understanding of the synergistic effect based on the high valence state synergism for heterogeneous catalysts in electrocatalysis.展开更多
The oxidation state of sulfur is detected in Na20-CaO-SiO2 float glass by synchrotron radiation X-ray absorption near edge structure (XANES) spectra at the sulfur K edge. The measured spectra show the only presence ...The oxidation state of sulfur is detected in Na20-CaO-SiO2 float glass by synchrotron radiation X-ray absorption near edge structure (XANES) spectra at the sulfur K edge. The measured spectra show the only presence of S^6+ in the Na20-CaO-SiO2 float glass and the oxidation state of sulfur do not change with the increase of glass depth. It is also found that, after the melt has gone through the molten tin bath, the S^6+ is the dominant species, but S^2- is also present on both surfaces. It is not certain whether cation bonds to S^2- or not, because there are many cations dissolved in the melted tin which makes the spectrum complicated.展开更多
文摘Signature verification involves vague situations in which a signature could resemble many reference samples ormight differ because of handwriting variances. By presenting the features and similarity score of signatures from thematching algorithm as fuzzy sets and capturing the degrees of membership, non-membership, and indeterminacy,a neutrosophic engine can significantly contribute to signature verification by addressing the inherent uncertaintiesand ambiguities present in signatures. But type-1 neutrosophic logic gives these membership functions fixed values,which could not adequately capture the various degrees of uncertainty in the characteristics of signatures. Type-1neutrosophic representation is also unable to adjust to various degrees of uncertainty. The proposed work exploresthe type-2 neutrosophic logic to enable additional flexibility and granularity in handling ambiguity, indeterminacy,and uncertainty, hence improving the accuracy of signature verification systems. Because type-2 neutrosophiclogic allows the assessment of many sources of ambiguity and conflicting information, decision-making is moreflexible. These experimental results show the possible benefits of using a type-2 neutrosophic engine for signatureverification by demonstrating its superior handling of uncertainty and variability over type-1, which eventuallyresults in more accurate False Rejection Rate (FRR) and False Acceptance Rate (FAR) verification results. In acomparison analysis using a benchmark dataset of handwritten signatures, the type-2 neutrosophic similaritymeasure yields a better accuracy rate of 98% than the type-1 95%.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1401001)the National Natural Science Foundation of China(Nos.41501417,41406204)
文摘HY-2A is the first one of the Chinese HY-2 ocean satellite series carrying a microwave radiometer(RM)to measure sea surface temperature,sea surface wind speed,atmospheric water vapor,cloud liquid water content,and rain rate.We verified the RM level 1B brightness temperature(T B)to retrieve environmental parameters.In the verification,TB that simulated using the ocean-atmosphere radiative transfer model(RTM)was used as a reference.The total bias and total standard deviation(SD)of the RM level 1B TB,with reference to the RTM simulation,ranged-20.6-4.38 K and 0.7-2.93 K,respectively.We found that both the total bias and the total SD depend on the frequency and polarization,although the values for ascending and descending passes are different.In addition,substantial seasonal variation of the bias was found at all channels.The verification results indicate the RM has some problems regarding calibration,e.g.,correction of antenna spillover and antenna physical emission,especially for the 18.7-GHz channel.Based on error analyses,a statistical recalibration algorithm was designed and recalibration was performed for the RM level 1B TB.Validation of the recalibrated TB indicated that the quality of the recalibrated RM level 1B TB was improved significantly.The bias of the recalibrated T B at all channels was reduced to<0.4 K,seasonal variation was almost eradicated,and SD was diminished(i.e.,the SD of the 18.7-GHz channel was reduced by more than 0.5K).
基金funding from the Basic Research Project of the Education Department of Shaanxi Province(21JC010,21JP035)the Young and Middle-Aged Scientific Research and Innovation Team of the Shaanxi Provincial Administration of Traditional Chinese Medicine(2022SLRHLJ001)the 2023 Central Financial Transfer Payment Local Project“Innovation and Improvement of Five Types of Hospital Preparations,Such as Roumudan Granules”.
文摘Background:The purpose of the study was to investigate the active ingredients and potential biochemical mechanisms of Juanbi capsule in knee osteoarthritis based on network pharmacology,molecular docking and animal experiments.Methods:Chemical components for each drug in the Juanbi capsule were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,while the target proteins for knee osteoarthritis were retrieved from the Drugbank,GeneCards,and OMIM databases.The study compared information on knee osteoarthritis and the targets of drugs to identify common elements.The data was imported into the STRING platform to generate a protein-protein interaction network diagram.Subsequently,a“component-target”network diagram was created using the screened drug components and target information with Cytoscape software.Common targets were imported into Metascape for GO function and KEGG pathway enrichment analysis.AutoDockTools was utilized to predict the molecular docking of the primary chemical components and core targets.Ultimately,the key targets were validated through animal experiments.Results:Juanbi capsule ameliorated Knee osteoarthritis mainly by affecting tumor necrosis factor,interleukin1β,MMP9,PTGS2,VEGFA,TP53,and other cytokines through quercetin,kaempferol,andβ-sitosterol.The drug also influenced the AGE-RAGE,interleukin-17,tumor necrosis factor,Relaxin,and NF-κB signaling pathways.The network pharmacology analysis results were further validated in animal experiments.The results indicated that Juanbi capsule could decrease the levels of tumor necrosis factor-αand interleukin-1βin the serum and synovial fluid of knee osteoarthritis rats and also down-regulate the expression levels of MMP9 and PTGS2 proteins in the articular cartilage.Conclusion:Juanbi capsule may improve the knee bone microstructure and reduce the expression of inflammatory factors of knee osteoarthritis via multiple targets and multiple signaling pathways.
基金Under the auspices of the National Natural Science Foundation of China(No.42375106,41805098)the National Key R&D Program of China(No.2023YFB3907500)。
文摘Anthropogenic Nitrogen oxides(NO_(x)=NO_(2)+NO)emissions are highly concentrated in urban area,and the weekly cycles,seasonal patterns and long-term trends of tropospheric NO_(2) columns over cities differ from region to region due to different emission sectoral compositions and human activities.In this study,we used satellite observed tropospheric NO_(2) column data to compare the longand short-term NO_(2) column density time series over cities in the United Sates(the U.S.),western Europe and China.The results showed that in all the targeted cities,the outbreak of the Corona Virus Disease in 2019(COVID-19)moved the December peak of the city-level NO_(2)columns forward to November and October or even earlier in 2020 and 2021.On weekly level,cities in the U.S.show the lowest NO_(2) columns ratio on weekend/work day,then come the western European cities,and a weak weekly pattern is seen in Chinese cities.For all the cites,we find a higher weekend/work day NO_(2) ratio in cold seasons than in warm seasons,indicating a higher contribution from NOx emission sectors of residential,industry and power plants in the warm seasons.In the long-term,NO_(2) columns over the U.S.and western European cities declined by a fraction twice that of the regional mean level from 2004 to 2021.In China,NO_(2) columns started to decrease since 2012,at a similar rate between the city and regional level.This work confirms the importance to quantify and control NOx emissions from cities.
基金supported by the Tsinghua University 2021 Doctoral Summer Projectsupported by the National Key R&D Program of China (No. 2018YFE0301102)National Natural Science Foundation of China (Nos. 11875020 and 11875023)。
文摘The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estimate the ‘logic loophole' of this technique. The finite-width effect and unpredictable errors reduce the technique's reliability, which leads to this loophole. Based on imaging theory, the photos of a virtual camera are simulated by integrating the assumed luminous intensity of plasma. Based on Hommen's theory, the plasma optical boundary is reconstructed from the photos. Comparing the reconstructed boundary with the one assumed, the logic loophole and its two effects are quantitatively estimated. The finite-width effect is related to the equivalent thickness of the luminous layer, which is generally about 2-4 cm but sometimes larger. The level of unpredictable errors is around 0.65 cm. The technique based on Hommen's theory is generally reliable, but finite-width effect and unpredictable errors have to be taken into consideration in some scenarios. The parameters of HL-2M are applied in this work.
基金Supported by the National Natural Science Foundation of China
文摘This paper presents the techniques of implicit traversing and state verification for sequential finite state machines(FSMs) based of on the state collapsing of state transition graph(STG). The problems of state designing are described. In order to achieve high state enumeration coverage, heuristic knowledge is proposed.
文摘Formal verification is fundamental in many phases of digital systems design. The most successful verification procedures employ Ordered Binary Decision Diagrams (OBDDs) as canonical representation for both Boolean circuit specifications and logic designs, but these methods require a large amount of memory and time. Due to these limitations, several models of Decision Diagrams have been studied and other verification techniques have been proposed. In this paper, we have used probabilistic verification with Galois (or finite) field GF(2m) modifying the CUDD package for the computation of signatures in classical OBDDs, and for the construction of Mod2-OBDDs (also known as ?-OBDDs). Mod2-OBDDs have been constructed with a two-level layer of ?-nodes using a positive Davio expansion (pDE) for a given variable. The sizes of the Mod2-OBDDs obtained with our method are lower than the Mod2-OBDDs sizes obtained with other similar methods.
基金Project (2009BB4228) supported by the Natural Science Foundation Project of Chongqing Science and Technology Commission,ChinaProject (CK2010Z09) supported by the Research Foundation of Chongqing University of Science and Technology,China
文摘In order to reduce the oxidation and volatilization caused by Mg element in the traditional methods for synthesizing Mg2Si compounds,Mg2Si thermoelectric materials were prepared by solid state reaction and microwave radiation techniques.Structure and phase composition of the materials were investigated by X-ray diffraction.The electrical conductivity,Seebeck coefficient and thermal conductivity were measured as a function of temperature from 300 to 700 K.It is found that high purity Mg2Si powders can be obtained with excessive content of 8% Mg from the stoichiometric Mg2Si at 853 K and 2.5 kW for 30 min.A maximum dimensionless figure of merit,ZT,of about 0.13 was obtained for Mg2Si at 600 K.
基金Project supported by the Research Funds of the Key Laboratory of Fuel Cell Technology of Guangdong Province,ChinaProject(7411793079907)supported by the Guangzhou Special Foundation for Applied Basic Research+1 种基金Project(2013A15GX048)supported by the Dalian Science and Technology Project Foundation,ChinaProject(21376035)supported by the National Natural Science Foundation of China
文摘Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction temperature and reaction time of SH route, and the calcination temperature of SSR route on the purity, particle morphology and electrochemical properties of the prepared LiMn2O4 materials were studied. The experimental results show that after 15 min reaction in SH route at 400 ℃ and 30 MPa, the reaction time of SSR could be significantly decreased, e.g. down to 3 h with the formation temperature of 800 ℃, compared with the conventional solid state reaction method. The prepared LiMn2O4 material exhibits good crystallinity, uniform size distribution and good electrochemical performance, and has an initial specific capacity of 120 mA.h/g at a rate of 0.1C (1C=148 mA/g) and a good rate capability at high rates, even up to 50C.
基金supported by Science Challenge Project [No TZ2018001]Shandong Provincial Natural Science Foundation [No ZR2017BA014]+1 种基金National Natural Science Foundation of China [No91630312]the Development Program for Defense Ministry of China [No.C1520110002]
文摘The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE) technique has become the third pillar of detonation research, along with theory and experiment, due to the detonation phenomenon is difficult to explain by the theoretical analysis, and the cost required to accredit the reliability of detonation products is very high, even some physical experiments of detonation are impossible. The numerical simulation technique can solve these complex problems in the real situation repeatedly and reduce the design cost and time stunningly. But the reliability of numerical simulation software and the serviceability of the computational result seriously hinders the extension, application and the self-restoration of the simulation software, restricts its independently innovational ability. This article deals with the physical modeling, numerical simulation, and software development of detonation in a unified way. Verification and validation and uncertainty quantification (V&V&UQ) is an important approach in ensuring the credibility of the modeling and simulation of detonation. V&V of detonation is based on our independently developed detonation multiphysics software-LAD2D. We propose the verification method based on mathematical theory and program function as well as availability of its program execution. Validation is executed by comparing with the experiment data. At last, we propose the future prospect of numerical simulation software and the CAE technique, and we also pay attention to the research direction of V&V&UQ.
基金supported by the National Natural Science Foundation of China(21972124,21603041)the Priority Academic Program Development of Jiangsu Higher Education Institutionthe support of the Six Talent Peaks Project of Jiangsu Province(XCL-070-2018)。
文摘High valence state species are significant in the energy-relevant electrochemical oxidation reactions.Herein,the high active state of Ni^(3+)formation induced by Mo^(6+)and their efficient synergism in NiS_(2)-MoS_(2)hetero-nanorods powder catalyst with the rough layered structure are demonstrated,as proof of concept,for the urea-assisted water electrolysis.This catalyst can be derived from the sulfidation of NiMoO_(4) nanorods that can realize individual metal sulfides sufficiently mixing at a domain size in the nanoscale which creates lots of active sites and nanointerfaces.The high valence state of Mo^(6+)and Ni^(3+)formation and increased conductive phase of 1 T MoS_(2)in the hetero-nanorods compared to the counterpart pure phases are revealed by spectral study and microscopic analysis;high electrochemical surface area and active site exposure are found due to the nano-interface formation and layered rough nanosheets over the surface of nanorods.They show much higher catalytic performance than their pure phases for urea oxidation,including high catalytic activity,stability,charge transfer ability and catalytic kinetics resulting from more active Ni^(3+)species formation and electronic synergism of high valence metals.Transformation of 1 T MoS_(2)to Mo^(6+)and increased amount of Mo^(6+)and Ni^(3+)after stability test indicate their involvement and synergism for the catalysis reaction.The current work offers a novel understanding of the synergistic effect based on the high valence state synergism for heterogeneous catalysts in electrocatalysis.
基金Funded by the National Natural Science Foundation of China(No.50972136)
文摘The oxidation state of sulfur is detected in Na20-CaO-SiO2 float glass by synchrotron radiation X-ray absorption near edge structure (XANES) spectra at the sulfur K edge. The measured spectra show the only presence of S^6+ in the Na20-CaO-SiO2 float glass and the oxidation state of sulfur do not change with the increase of glass depth. It is also found that, after the melt has gone through the molten tin bath, the S^6+ is the dominant species, but S^2- is also present on both surfaces. It is not certain whether cation bonds to S^2- or not, because there are many cations dissolved in the melted tin which makes the spectrum complicated.