基于Hill动力学与Michaelis-Menten方程,建立理论模型研究发状分裂相关增强子1(Hairy and enhancer of split 1,Hes1)调控蛋白激酶B(Protein Kinase B,AKT)-鼠双微体2(Murine Double Minute2,MDM2)-抗癌基因p53(p53)-第10号染色体缺失...基于Hill动力学与Michaelis-Menten方程,建立理论模型研究发状分裂相关增强子1(Hairy and enhancer of split 1,Hes1)调控蛋白激酶B(Protein Kinase B,AKT)-鼠双微体2(Murine Double Minute2,MDM2)-抗癌基因p53(p53)-第10号染色体缺失的磷酸酶及张力蛋白同源的基因(Phosphatase and tensin homolog deleted on chromosome ten,PTEN)通路的一种物理机制.研究发现,Hes1通过与PTEN结合抑制PTEN表达,并调控AKT信号.表明了Hes1蛋白的合成,以及Hes1与PTEN相互作用调控AKT-MDM2-p53-PTEN通路信号,将会有效地控制细胞结果.Hes1作为AKT-MDM2-p53-PTEN信号通路中上游调节的重要因素,还可以在一定程度上通过影响p53蛋白功能,改变p53对肿瘤的抑制性.理论结果可用于预测Notch通路信号异常诱导的致癌性,并进一步揭示了Notch信号通路影响细胞AKT-MDM2-p53-PTEN通路的激活机制.展开更多
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple s...Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.展开更多
With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is ...With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.展开更多
With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)...With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.展开更多
Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate resul...Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connec...The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond.展开更多
Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck s...Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck stops are the only places for the trucks to stop legally and safely. In locations without sufficient parking areas, trucks often park on interstate ramps, which create safety risks for other interstate motorists. Historically, agencies have employed costly and time intensive manual counting methods, camera surveillance, and driver surveys to assess truck parking. Connected truck data, available in near real-time, offers an efficient alternative to practitioners to assess truck parking patterns and identify areas where there may be insufficient safe parking spaces. This paper presents a case study of interstate I-70 in east central Indiana and documents the observed spatiotemporal impacts of a rest area closure on truck parking on nearby interstate ramps. Results showed that there was a 28% increase in parking on ramps during the rest area closure. Analysis also found that ramps closest to the rest area were most impacted by the closure, seeing a rise in truck parking sessions as high as 2.7 times. Parking duration on the ramps during rest area closure also increased drastically. Although it was expected that this would result in increased parking by trucks on adjacent ramps, this before, during, after scenario provided an ideal scenario to evaluate the robustness of these techniques to assess changing parking characteristics of long-haul commercial trucks. The data analytics and visualization tools presented in this study are scalable nationwide and will aid stakeholders in informed data-driven decision making when allocating resources towards improving the nations commercial vehicle parking infrastructure.展开更多
文摘目的 基于c-Jun氨基末端激酶(JNK)-p62/螯合体(SQSTM1)信号通路探讨糖肾煎对2型糖尿病肾病(DN)大鼠足细胞的保护作用。方法 SD大鼠随机分成正常组、DN组、糖肾煎低、中、高[生药5、10、20 g/(kg·d)]剂量组(糖肾煎-L、M、H组)、二甲双胍组[100 mg/(kg·d)]。除正常组外,其余各组通过喂养高脂高糖饲料和腹腔注射链脲佐菌素(STZ)进行DN模型构建。药物干预结束后,检测大鼠血生化指标空腹血糖(FBG)、负荷后2 h血糖(P2 h BG)、血肌酐(SCr)、血尿素氮(BUN)水平;苏木素-伊红(HE)、六胺银(PASM)染色观察肾组织病理学变化;透射电镜(TEM)观察肾小球基底膜损伤和足细胞变化情况;Western印迹检测肾组织中微管相关蛋白1A/1B-轻链(LC)3、p-JNK、JNK、p62/SQSTM1、肾病蛋白(Nephrin)蛋白表达。结果 与正常组比较,DN组FBG、P2 h BG、SCr、BUN水平及p62/SQSTM1蛋白表达明显升高,LC3-Ⅱ、Nephrin蛋白表达和p-JNK/JNK明显降低(P<0.05);光镜下观察到肾小球缩小、管丛系膜明显扩张,并有基底膜增生增厚等现象;TEM下观察到肾小球基底膜增厚、足细胞排列紊乱、形态改变、足突融合等现象。与DN组比较,糖肾煎-L、M、H组和二甲双胍组FBG、P2 h BG、SCr、BUN水平及p62/SQSTM1蛋白表达明显降低,LC3-Ⅱ、Nephrin蛋白表达和p-JNK/JNK明显升高(P<0.05);并且肾小球基底膜增厚、足细胞足突融合等情况均获得一定程度减轻。结论 糖肾煎对2型DN大鼠足细胞具有一定保护作用,可能是通过调控JNK-p62/SQSTM1信号通路,提高足细胞自噬,从而起到肾脏保护功效。
文摘基于Hill动力学与Michaelis-Menten方程,建立理论模型研究发状分裂相关增强子1(Hairy and enhancer of split 1,Hes1)调控蛋白激酶B(Protein Kinase B,AKT)-鼠双微体2(Murine Double Minute2,MDM2)-抗癌基因p53(p53)-第10号染色体缺失的磷酸酶及张力蛋白同源的基因(Phosphatase and tensin homolog deleted on chromosome ten,PTEN)通路的一种物理机制.研究发现,Hes1通过与PTEN结合抑制PTEN表达,并调控AKT信号.表明了Hes1蛋白的合成,以及Hes1与PTEN相互作用调控AKT-MDM2-p53-PTEN通路信号,将会有效地控制细胞结果.Hes1作为AKT-MDM2-p53-PTEN信号通路中上游调节的重要因素,还可以在一定程度上通过影响p53蛋白功能,改变p53对肿瘤的抑制性.理论结果可用于预测Notch通路信号异常诱导的致癌性,并进一步揭示了Notch信号通路影响细胞AKT-MDM2-p53-PTEN通路的激活机制.
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金supported by the Natural Science Foundation of Shanghai Municipality(21ZR1423400)the National Natural Science Funds of China(62173217)NSFC/Royal Society Cooperation and Exchange Project(62111530154,IEC\NSFC\201107).
文摘Dear Editor,This letter concerns the development of approximately bi-similar symbolic models for a discrete-time interconnected switched system(DT-ISS).The DT-ISS under consideration is formed by connecting multiple switched systems known as component switched systems(CSSs).Although the problem of constructing approximately bi-similar symbolic models for DT-ISS has been addressed in some literature,the previous works have relied on the assumption that all the subsystems of CSSs are incrementally input-state stable.
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3103200).
文摘With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.
基金supported by the National Natural Science Foundation of China(Grant No.62072031)the Applied Basic Research Foundation of Yunnan Province(Grant No.2019FD071)the Yunnan Scientific Research Foundation Project(Grant 2019J0187).
文摘With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%.
基金This research is partially supported by grant from the National Natural Science Foundation of China(No.72071019)grant from the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0185)grant from the Chongqing Graduate Education and Teaching Reform Research Project(No.yjg193096).
文摘Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
文摘The Indiana Department of Transportation (INDOT) adopted the Maintenance Decision Support System (MDSS) for user-defined plowing segments in the winter of 2008-2009. Since then, many new data sources, including connected vehicle data, enhanced weather data, and fleet telematics, have been integrated into INDOT winter operations activities. The objective of this study was to use these new data sources to conduct a systematic evaluation of the robustness of the MDSS forecasts. During the 2023-2024 winter season, 26 unique MDSS forecast data attributes were collected at 0, 1, 3, 6, 12 and 23-hour intervals from the observed storm time for 6 roadway segments during 13 individual storms. In total, over 888,000 MDSS data points were archived for this evaluation. This study developed novel visualizations to compare MDSS forecasts to multiple other independent data sources, including connected vehicle data, National Oceanic and Atmospheric Administration (NOAA) weather data, road friction data and snowplow telematics. Three Indiana storms, with varying characteristics and severity, were analyzed in detailed case studies. Those storms occurred on January 6th, 2024, January 13th, 2024 and February 16th, 2024. Incorporating these visualizations into winter weather after-action reports increases the robustness of post-storm performance analysis and allows road weather stakeholders to better understand the capabilities of MDSS. The results of this analysis will provide a framework for future MDSS evaluations and implementations as well as training tools for winter operation stakeholders in Indiana and beyond.
文摘Ensuring adequate access to truck parking is critical to the safe and efficient movement of freight traffic. There are strict federal guidelines for commercial truck driver rest periods. Rest areas and private truck stops are the only places for the trucks to stop legally and safely. In locations without sufficient parking areas, trucks often park on interstate ramps, which create safety risks for other interstate motorists. Historically, agencies have employed costly and time intensive manual counting methods, camera surveillance, and driver surveys to assess truck parking. Connected truck data, available in near real-time, offers an efficient alternative to practitioners to assess truck parking patterns and identify areas where there may be insufficient safe parking spaces. This paper presents a case study of interstate I-70 in east central Indiana and documents the observed spatiotemporal impacts of a rest area closure on truck parking on nearby interstate ramps. Results showed that there was a 28% increase in parking on ramps during the rest area closure. Analysis also found that ramps closest to the rest area were most impacted by the closure, seeing a rise in truck parking sessions as high as 2.7 times. Parking duration on the ramps during rest area closure also increased drastically. Although it was expected that this would result in increased parking by trucks on adjacent ramps, this before, during, after scenario provided an ideal scenario to evaluate the robustness of these techniques to assess changing parking characteristics of long-haul commercial trucks. The data analytics and visualization tools presented in this study are scalable nationwide and will aid stakeholders in informed data-driven decision making when allocating resources towards improving the nations commercial vehicle parking infrastructure.