期刊文献+
共找到73,496篇文章
< 1 2 250 >
每页显示 20 50 100
3shape Trios 3口内扫描和传统硅橡胶在牙体缺损修复中的失败原因分析
1
作者 李娜 《临床医学研究与实践》 2024年第9期85-88,共4页
目的分析并比较3shape Trios 3口内扫描和传统硅橡胶在牙体缺损修复中的失败原因,为临床取模以及口内扫描仪性能改善提供参考依据。方法回顾性分析2021年1月至2023年10月实施口腔固定修复治疗并返工的200例患者为研究对象,以取模方式将... 目的分析并比较3shape Trios 3口内扫描和传统硅橡胶在牙体缺损修复中的失败原因,为临床取模以及口内扫描仪性能改善提供参考依据。方法回顾性分析2021年1月至2023年10月实施口腔固定修复治疗并返工的200例患者为研究对象,以取模方式将其分为口扫组(n=97)和硅橡胶组(n=103)。口扫组给予3shape Trios 3口内扫描,硅橡胶组给予传统硅橡胶。比较两组在牙体缺损修复中的失败原因。结果两组的牙体缺损修复失败分布情况比较,差异具有统计学意义(P<0.05);口扫组中,龈下缺损修复失败占比高于龈上(P<0.05)。两组的龈下缺损修复失败原因比较,差异具有统计学意义(P<0.05)。结论相较于传统硅橡胶,3shape Trios 3口内扫描在龈上缺损修复中更有优势,但在龈下缺损修复中,硅橡胶应用效果更佳。 展开更多
关键词 3shape Trios 3口内扫描 硅橡胶 牙体缺损
下载PDF
Insights into Nano-and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage 被引量:1
2
作者 Jiajia Qiu Yu Duan +4 位作者 Shaoyuan Li Huaping Zhao Wenhui Ma Weidong Shi Yong Lei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期187-230,共44页
Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical... Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint. 展开更多
关键词 Nano-and micro-structured Interconnected porous scaffolds Electrode design Electrochemical energy storage
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:2
3
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
Computer vision-aided DEM study on the compaction characteristics of graded subgrade filler considering realistic coarse particle shapes 被引量:1
4
作者 Taifeng Li Kang Xie +2 位作者 Xiaobin Chen Zhixing Deng Qian Su 《Railway Engineering Science》 EI 2024年第2期194-210,共17页
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th... The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction. 展开更多
关键词 Subgrade filler particles Deep learning particle shape analysis Particle library Compaction characteristics Discrete element method(DEM)
下载PDF
Customized scaffolds for large bone defects using 3D‑printed modular blocks from 2D‑medical images
5
作者 Anil AAcar Evangelos Daskalakis +4 位作者 Paulo Bartolo Andrew Weightman Glen Cooper Gordon Blunn Bahattin Koc 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期74-87,共14页
Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced ... Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects. 展开更多
关键词 Additive manufacturing Modular scaffolds Large bone defect Customized scaffold design Patient-specific scaffolds
下载PDF
基于改进Alpha Shape算法的点云数据岛屿边界提取
6
作者 宋晓辉 熊祖雄 +2 位作者 张炎 吕富强 韦建林 《海洋测绘》 CSCD 北大核心 2024年第1期58-62,共5页
针对机载LiDAR点云的岛屿岸线提取过程复杂、附属岛屿岸线难以提取等问题,提出一种基于改进Alpha Shape算法的点云数据岛屿边界提取方法。首先利用布料模拟滤波算法剔除非岛屿点云数据,通过欧式聚类进行不同岛屿的提取,再将岛屿点云数... 针对机载LiDAR点云的岛屿岸线提取过程复杂、附属岛屿岸线难以提取等问题,提出一种基于改进Alpha Shape算法的点云数据岛屿边界提取方法。首先利用布料模拟滤波算法剔除非岛屿点云数据,通过欧式聚类进行不同岛屿的提取,再将岛屿点云数据投影至二维平面,并根据岛屿点云构建格网。在此基础上使用自适应Alpha Shape算法,对提取出的岛屿点云进行边界提取,即可得到岛屿的岸线轮廓。选取新西兰的玛提尤/萨姆斯岛作为研究区域,并将本文算法与Alpha Shape算法进行对比,结果表明:本文算法提取岛屿边界点云的精准度为97.78%,可以准确地提取岛屿岸线,为海岛规划提供参考。 展开更多
关键词 摄影测量 机载LiDAR点云 边界提取 欧式聚类 自适应Alpha shape
下载PDF
Biological scaffold as potential platforms for stem cells:Current development and applications in wound healing
7
作者 Jie-Yu Xiang Lin Kang +7 位作者 Zi-Ming Li Song-Lu Tseng Li-Quan Wang Tian-Hao Li Zhu-Jun Li Jiu-Zuo Huang Nan-Ze Yu Xiao Long 《World Journal of Stem Cells》 SCIE 2024年第4期334-352,共19页
Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address ... Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address this issue,exhibiting significant potential for enhancing wound healing rates,improving wound quality,and promoting skin regeneration.However,the use of stem cells in skin regeneration presents several challenges.Recently,stem cells and biomaterials have been identified as crucial components of the wound-healing process.Combination therapy involving the development of biocompatible scaffolds,accompanying cells,multiple biological factors,and structures resembling the natural extracellular matrix(ECM)has gained considerable attention.Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells,providing them with an environment conducive to growth,similar to that of the ECM.These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing.This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing,emphasizing their capacity to facilitate stem cell adhesion,proliferation,differentiation,and paracrine functions.Additionally,we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity. 展开更多
关键词 Stem-cell-based therapy Biological scaffolds Wound healing Extracellular matrix mimicry Cellular activities enhancement scaffold characteristics
下载PDF
3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration
8
作者 Xiao Zhao Siyi Wang +6 位作者 Feilong Wang Yuan Zhu Ranli Gu Fan Yang Yongxiang Xu Dandan Xia Yunsong Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期966-979,共14页
In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we dev... In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we developed an Mg-1Ca/polycaprolactone(Mg-1Ca/PCL)composite scaffolds to overcome these limitations.We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5,10,and 20 wt%.Porous scaffolds with controlled macro-and microstructure were printed using the fused deposition modeling method.We explored the mechanical strength,biocompatibility,osteogenesis performance,and molecular mechanism of the Mg-1Ca/PCL composites.The 5 and 10 wt%Mg-1Ca/PCL composites were found to have good biocompatibility.Moreover,they promoted the mechanical strength,proliferation,adhesion,and osteogenic differentiation of human bone marrow stem cells(hBMSCs)of pure PCL.In vitro degradation experiments revealed that the composite material stably released Mg_(2)+ions for a long period;it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth.Microcomputed tomography and histological analysis showed that both 5 and 10 wt%Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects.Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect.Therefore,Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application.Statement of significance:Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects.However,there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds.This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities.Furthermore,the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold.The obtained porous scaffolds can significantly promote the regeneration of bone defects. 展开更多
关键词 3D printing Bone tissue engineering MAGNESIUM OSTEOGENIC POLYCAPROLACTONE scaffold.
下载PDF
J-shaped association between dietary thiamine intake and the risk of cognitive decline in cognitively healthy,older Chinese individuals
9
作者 Chengzhang Liu Qiguo Meng +7 位作者 Yuanxiu Wei Xinyue Su Yuanyuan Zhang Panpan He Chun Zhou Mengyi Liu Ziliang Ye Xianhui Qin 《General Psychiatry》 CSCD 2024年第1期44-52,共9页
Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake... Background The prospective association of dietary thiamine intake with the risk of cognitive decline among the general older adults remains uncertain.Aims To investigate the association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals.Methods The study included a total of 3106 participants capable of completing repeated cognitive function tests.Dietary nutrient intake information was collected through 3-day dietary recalls and using a 3-day food-weighed method to assess cooking oil and condiment consumption.Cognitive decline was defined as the 5-year decline rate in global or composite cognitive scores based on a subset of items from the Telephone Interview for Cognitive Status-modified.Results The median follow-up duration was 5.9 years.There was a J-shaped relationship between dietary thiamine intake and the 5-year decline rate in global and composite cognitive scores,with an inflection point of 0.68 mg/day(95%confidence interval(Cl):0.56 to 0.80)and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake.Before the inflection point,thiamine intake was not significantly associated with cognitive decline.Beyond the inflection point,each unit increase in thiamine intake(mg/day)was associated with a significant decrease of 4.24(95%Cl:2.22 to 6.27)points in the global score and 0.49(95%Cl:0.23 to 0.76)standard units in the composite score within 5 years.A stronger positive association between thiamine intake and cognitive decline was observed in those with hypertension,obesity and those who were non-smokers(all p<0.05).Conclusions This study revealed a J-shaped association between dietary thiamine intake and cognitive decline in cognitively healthy,older Chinese individuals,with an inflection point at 0.68 mg/day and a minimal risk at 0.60-1.00 mg/day of dietary thiamine intake. 展开更多
关键词 INTAKE shaped cognitive
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
10
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 scaffold Biomaterial Sodium alginate CHITOSAN GELATIN 3D printing Tissue engineering
下载PDF
In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds
11
作者 Yanhao Hou Weiguang Wang Paulo Bartolo 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期651-669,共19页
Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomateria... Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers. 展开更多
关键词 Additive manufacturing Bone tissue engineering Carbon nanomaterial GRAPHENE Graphene oxide scaffold
下载PDF
Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection
12
作者 Cijun Shuai Xiaoxin Shi +2 位作者 Feng Yang Haifeng Tian Pei Feng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期296-311,共16页
Bacterial infection is a major issue after artificial bone transplantation due to the absence of antibacterial function of bone scaffold,which seriously causes the transplant failure and even amputation in severe case... Bacterial infection is a major issue after artificial bone transplantation due to the absence of antibacterial function of bone scaffold,which seriously causes the transplant failure and even amputation in severe cases.In this study,oxygen vacancy(OV)defects Fe-doped Ti O2(OV-FeTiO2)nanoparticles were synthesized by nano TiO2and Fe3O4via high-energy ball milling,which was then incorporated into polycaprolactone/polyglycolic acid(PCLGA)biodegradable polymer matrix to construct composite bone scaffold with good antibacterial activities by selective laser sintering.The results indicated that OV defects were introduced into the core/shell-structured OV-FeTiO2nanoparticles through multiple welding and breaking during the high-energy ball milling,which facilitated the adsorption of hydrogen peroxide(H2O2)in the bacterial infection microenvironment at the bone transplant site.The accumulated H2O2could amplify the Fenton reaction efficiency to induce more hydroxyl radicals(·OH),thereby resulting in more bacterial deaths through·OH-mediated oxidative damage.This antibacterial strategy had more effective broad-spectrum antibacterial properties against Gram-negative Escherichia coli(E.coli)and Gram-positive Staphylococcus aureus(S.aureus).In addition,the PCLGA/OV-FeTiO2scaffold possessed mechanical properties that match those of human cancellous bone and good biocompatibility including cell attachment,proliferation and osteogenic differentiation. 展开更多
关键词 bacterial infection bone scaffold selective laser sintering Fenton reaction antibacterial properties
下载PDF
Shape and diffusion instabilities of two non-spherical gas bubbles under ultrasonic conditions
13
作者 包乌日汗 王德鑫 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期715-721,共7页
Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities o... Ultrasonic cavitation involves dynamic oscillation processes induced by small bubbles in a liquid under the influence of ultrasonic waves. This study focuses on the investigation of shape and diffusion instabilities of two bubbles formed during cavitation. The derived equations for two non-spherical gas bubbles, based on perturbation theory and the Bernoulli equation, enable the analysis of their shape instability. Numerical simulations, utilizing the modified Keller–Miksis equation,are performed to examine the shape and diffusion instabilities. Three types of shape instabilities, namely, Rayleigh–Taylor,Rebound, and parametric instabilities, are observed. The results highlight the influence of initial radius, distance, and perturbation parameter on the shape and diffusion instabilities, as evidenced by the R_0–P_a phase diagram and the variation pattern of the equilibrium curve. This research contributes to the understanding of multiple bubble instability characteristics, which has important theoretical implications for future research in the field. Specifically, it underscores the significance of initial bubble parameters, driving pressure, and relative gas concentration in determining the shape and diffusive equilibrium instabilities of non-spherical bubbles. 展开更多
关键词 non-spherical bubble shape instability diffusive instability
下载PDF
Numerical Analysis of Permeability of Functionally Graded Scaffolds
14
作者 Dmitry Bratsun Natalia Elenskaya +1 位作者 Ramil Siraev Mikhail Tashkinov 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1463-1479,共17页
In this work,we numerically study the hydrodynamic permeability of new-generation artificial porous materials used as scaffolds for cell growth in a perfusion bioreactor.We consider two popular solid matrix designs ba... In this work,we numerically study the hydrodynamic permeability of new-generation artificial porous materials used as scaffolds for cell growth in a perfusion bioreactor.We consider two popular solid matrix designs based on triply periodic minimal surfaces,the Schwarz P(primitive)and D(diamond)surfaces,which enable the creation of materials with controlled porosity gradients.The latter property is crucial for regulating the shear stress field in the pores of the scaffold,which makes it possible to control the intensity of cell growth.The permeability of functionally graded materials is studied within the framework of both a microscopic approach based on the Navier-Stokes equation and an averaged description of the liquid filtration through a porous medium based on the equations of the Darcy or Forchheimer models.We calculate the permeability coefficients for both types of solid matrices formed by Schwarz surfaces,study their properties concerning forward and reverse fluid flows,and determine the ranges of Reynolds number for which the description within the Darcy or Forchheimer model is applicable.Finally,we obtain a shear stress field that varies along the sample,demonstrating the ability to tune spatially the rate of tissue growth. 展开更多
关键词 Porous media filtration models scaffolds functionally graded materials
下载PDF
Effect of granular shape on radial segregation in a two-dimensional drum
15
作者 徐悦 李然 +3 位作者 迟志鹏 修文正 孙其诚 杨晖 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期509-514,共6页
Granular segregation is widely observed in nature and industry.Most research has focused on segregation caused by differences in the size and density of spherical grains.However,due to the fact that grains typically h... Granular segregation is widely observed in nature and industry.Most research has focused on segregation caused by differences in the size and density of spherical grains.However,due to the fact that grains typically have different shapes,the focus is shifting towards shape segregation.In this study,experiments are conducted by mixing cubic and spherical grains.The results indicate that spherical grains gather at the center and cubic grains are distributed around them,and the degree of segregation is low.Through experiments,a structured analysis of local regions is conducted to explain the inability to form stable segregation patterns with obviously different geometric shapes.Further,through simulations,the reasons for the central and peripheral distributions are explained by comparing velocities and the number of collisions of the grains in the flow layer. 展开更多
关键词 granular materials cubic grains shape segregation segregation mechanism
下载PDF
Auxin-brassinosteroid crosstalk:Regulating rice plant architecture and grain shape
16
作者 Meidi Wu Jing Zhou +3 位作者 Qian Li Dunfan Quan Qingwen Wang Yong Gao 《The Crop Journal》 SCIE CSCD 2024年第4期953-963,共11页
Rice(Oryza sativa)plant architecture and grain shape,which determine grain quality and yield,are modulatedby auxin and brassinosteroid via regulation of cell elongation and proliferation.We review the signaltransducti... Rice(Oryza sativa)plant architecture and grain shape,which determine grain quality and yield,are modulatedby auxin and brassinosteroid via regulation of cell elongation and proliferation.We review the signaltransduction of these hormones and the crosstalk between their signals on the regulation of rice plantarchitecture and grain shape. 展开更多
关键词 AUXIN BRASSINOSTEROID Auxin-brassinosteroid crosstalk Plant architecture Grain shape
下载PDF
Flame Retardant Material Based on Cellulose Scaffold Mineralized by Calcium Carbonate
17
作者 Jinshuo Wang Lida Xing +1 位作者 Fulong Zhang Chuanfu Liu 《Journal of Renewable Materials》 EI CAS 2024年第1期89-102,共14页
Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a ce... Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a cellulose scaffold,and then alternately immersed in CaCl_(2) ethanol solution and NaHCO3 aqueous solution under vacuum.The high porosity and wettability resulting from delignification benefited the following mineralization process,changing the thermal properties of balsa wood significantly.The organic-inorganic wood composite showed abundant CaCO_(3) spherical particles under scanning electron microscopy.The peak of the heat release rate of delignified balsa-CaCO_(3) was reduced by 33%compared to the native balsa,according to the cone calorimetric characterization.The flame test demonstrated that the mineralized wood was flame retardant and selfextinguish.Additionally,the mineralized wood also displayed lower thermal conductivity.This study developed a feasible way to fabricate a lightweight,fire-retardant,self-extinguishing,and heat-insulating wood composite,providing a promising route for the valuable application of cellulosic biomass. 展开更多
关键词 Cellulose scaffold DELIGNIFICATION CaCO_(3) MINERALIZATION fire retardancy
下载PDF
Advanced strategies for 3D-printed neural scaffolds:materials,structure,and nerve remodeling
18
作者 Jian He Liang Qiao +5 位作者 Jiuhong Li Junlin Lu Zhouping Fu Jiafang Chen Xiangchun Zhang Xulin Hu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期747-770,共24页
Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurologic... Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurological diseases and injuries is critical to human health.Three-dimensional(3D)printing offers versatility and precision in the fabrication of neural scaffolds.Complex neural structures such as neural tubes and scaffolds can be fabricated via 3Dprinting.This reviewcomprehensively analyzes the current state of 3D-printed neural scaffolds and explores strategies to enhance their design.It highlights therapeutic strategies and structural design involving neural materials and stem cells.First,nerve regeneration materials and their fabrication techniques are outlined.The applications of conductive materials in neural scaffolds are reviewed,and their potential to facilitate neural signal transmission and regeneration is highlighted.Second,the progress in 3D-printed neural scaffolds applied to the peripheral and central nerves is comprehensively evaluated,and their potential to restore neural function and promote the recovery of different nervous systems is emphasized.In addition,various applications of 3D-printed neural scaffolds in peripheral and neurological diseases,as well as the design strategies of multifunctional biomimetic scaffolds,are discussed. 展开更多
关键词 Nerve regeneration 3D printing based neural scaffolds BIOMATERIALS Nervous system Design strategies
下载PDF
The interaction between a shaped charge jet and a single moving plate
19
作者 Andreas Helte Jonas Lundgren Jonas Candle 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of... Reactive armour is a very efficient add-on armour against shaped charge threats.Explosive reactive armour consists of one or several plates that are accelerated by an explosive.Similar but less violent acceleration of plates can also be achieved in a completely inert reactive armour.To be efficient against elongated jets,the motion of the plates needs to be inclined against the jet such that a sliding contact between the jet and the plates is established.This sliding contact causes a deflection and thinning of the jet.Under certain circumstances,the contact will become unstable,leading to severe disturbances on the jet.These disturbances will drastically reduce the jet penetration performance and it is therefore of interest to study the conditions that leads to an unstable contact.Previous studies on the interaction between shaped charge jets and flyer plates have shown that it is mainly the forward moving plate in an explosive reactive armour that is effective in disturbing the jet.This is usually attributed to the higher plate-to-jet mass flux ratio involved in the collision of the forward moving plate compared to the backward moving plate.For slow moving plates,as occurs in inert reactive armour,the difference in mass flux for the forward and backward moving plate is much lesser,and it is therefore of interest to study if other factors than the mass flux influences on the protection capability.In this work,experiments have been performed where a plate is accelerated along its length,interacting with a shaped charge jet that is fired at an oblique angle to the plate’s normal,either against or along the plate’s velocity.The arrangement corresponds to a jet interacting with a flyer plate from a reactive armour,with the exception that the collision velocity is the same for both types of obliquities in these experiments.The experiments show that disturbances on the jet are different in the two cases even though the collision velocities are the same.Numerical simulations of the interaction support the observation.The difference is attributed to the character of the contact pressure in the interaction region.For a backward moving plate,the maximum contact pressure is obtained at the beginning of the interaction zone and the contact pressure is therefore higher upstream than downstream of the jet while the opposite is true for a forward moving plate.A negative interface pressure gradient with respect to the jet motion results in a more stable flow than a positive,which means that the jet-plate contact is more stable for a backward moving plate than for a forward moving plate.A forward moving plate is thus more effective in disturbing the jet than a backward moving plate,not only because of the higher jet to plate mass flux ratio but also because of the character of the contact with the jet. 展开更多
关键词 Reactive armour Flyer plate shaped charge jet
下载PDF
Enhanced axonal regeneration and functional recovery of the injured sciatic nerve in a rat model by lithium-loaded electrospun nanofibrous scaffolds
20
作者 Banafsheh Dolatyar Bahman Zeynali +2 位作者 Iman Shabani Azita Parvaneh Tafreshi Reza Karimi-Soflou 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期701-720,共20页
Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,... Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold.To achieve this,we fabricated an electrospun nanofibrous scaffold(ENS)containing polylactide nanofibers loaded with lithium(Li)ions,a Wnt/β-catenin signaling activator.In addition,we seeded human adipose-derived mesenchymal stem cells(hADMSCs)onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced.We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model.Our results showed that Li-loaded ENSs gradually released Li within 11 d,at concentrations ranging from 0.02 to(3.64±0.10)mmol/L,and upregulated the expression of Wnt/β-catenin target genes(cyclinD1 and c-Myc)as well as those of Schwann cell markers(growth-associated protein 43(GAP43),S100 calcium binding protein B(S100B),glial fibrillary acidic protein(GFAP),and SRY-box transcription factor 10(SOX10))in differentiated hADMSCs.In the PNI rat model,implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve.This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs,which showed no fibrous connective tissue but enhanced organized myelinated axons.The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering. 展开更多
关键词 Stem cell Schwann cell differentiation Electrospun nanofibrous scaffold Lithium ion Nerve regeneration
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部