A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in...A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in this paper improve and extend the earlier results.展开更多
Let B be the class of 'better' admissible multimaps due to the author. We introduce new concepts of admissibility (in the sense of Klee) and of Klee approximability for subsets of G-convex uniform spaces and show ...Let B be the class of 'better' admissible multimaps due to the author. We introduce new concepts of admissibility (in the sense of Klee) and of Klee approximability for subsets of G-convex uniform spaces and show that any compact closed multimap in B from a G-convex space into itself with the Klee approximable range has a fixed point. This new theorem contains a large number of known results on topological vector spaces or on various subclasses of the class of admissible G-convex spaces. Such subclasses are those of O-spaces, sets of the Zima-Hadzic type, locally G-convex spaces, and LG-spaces. Mutual relations among those subclasses and some related results are added.展开更多
文摘A new conception of generalized set-valued Ф-hemi-contractive mapping in Banach spaces is presented. Some strong convergence theorems of Ishikawa and Mann iterative approximation with errors is proved. The results in this paper improve and extend the earlier results.
文摘Let B be the class of 'better' admissible multimaps due to the author. We introduce new concepts of admissibility (in the sense of Klee) and of Klee approximability for subsets of G-convex uniform spaces and show that any compact closed multimap in B from a G-convex space into itself with the Klee approximable range has a fixed point. This new theorem contains a large number of known results on topological vector spaces or on various subclasses of the class of admissible G-convex spaces. Such subclasses are those of O-spaces, sets of the Zima-Hadzic type, locally G-convex spaces, and LG-spaces. Mutual relations among those subclasses and some related results are added.