Located in the northern margin of the Qinghai—Tibet Plateau, the Longshoushan Mt. is a small block between Qinghai—Tibet Landmass and Alashan Landmass.Traditional tectonic viewpoint does not consider that the Longsh...Located in the northern margin of the Qinghai—Tibet Plateau, the Longshoushan Mt. is a small block between Qinghai—Tibet Landmass and Alashan Landmass.Traditional tectonic viewpoint does not consider that the Longshoushan Mt. is a single tectonic block. It is quite evident that there is only a hazy idea about the Longshoushan block. Though there is a very complex tectonic region between Qinghai—Tibet Landmass and Alashan Landmass, the Longshoushan block in the region shows unique tectonic landforms, deep structures and uplift mechanisms. Researching into the relationship between the Longshoushan block and the Qinghai—Tibet and Alashan Landmasses will contribute to the realization of boundary and orogenic belt on the northern margin of the Qinghai—Tibet block. It is a very important scientific subject.The Longshoushan Mt., longer than 150km in NWW direction and wider than 10km, is located on the northern side of Hexi corridor(100 5°~102 5°E,38 5°~39 3°N). It extends from the northwest of Zhangye to Hexibu, and from the south of Chaoshui basin to the north of Minle basin. From west to east, there are the highest peak, Dongdashan Mt.(3616m), the second peak, Dufengding(2937m) and Qianshan peak(2827m), height of the mountains is getting lower and lower, mean height above sea level is over 2000m, and relative height difference is about 1000m. The Longshoushan Mt. provides a natural defence for stopping the southward migration of sandstorm in the Hexi corridor, and forms a topographic step zone from the Alashan Plateau to the Qinghai—Tibet Plateau. In the Longshoushan area, developed landforms, such as planation surface, table\|land, terrace land, are general characters of all geomorphic units. It is shown that the Longshoushan Mt. is a intermittently uplifted block. An astonishingly similar of geometric patterns of Taohualashan Mt. and Hongshihu basin is very interesting natural landscape in the area. It is suggested that Taohualashan Mt. broke away from Hongshihu Basin in secular tectonic movement. The viewpoint is supported by major formation, lithofacies, limitation and style of active faulting. The Longshoushan block consists of two major active fault zones (the northern Longshoushan fault zone and the southern Longshoushan fault zone), the active Pingshanhu—Hongshihu fault basin belt and Taohualashan—Xieposhan tectonic uplift belt. In addition, there are the NNW\|trending West Polamading fault, NWW\|trending Maohudong fault trough, NNE\|trending Daxiahe rift valley and others on the block. the activity and formation style of these structures indicate that the block is acted not only by compressive stress, but also by tensile stress. The northern Longshoushan and southern Longshoushan fault zones are closely related to formation and evolution of the Longshoushan block, the two zones are active fault zones since late Pleistocene and boundary fault zones of the block. The genesis and activity style of the Pingshanhu\|Hongshihu basin are similar to the continental rift, which may be due to the mantle uplift.展开更多
The Qinghai—Tibet plateau and its surrounding areas including Indian subcontinent, Xinjiang, Mongolia, is a largest lithosphere convergence place in the world, which characterized by continent\|continent collision wi...The Qinghai—Tibet plateau and its surrounding areas including Indian subcontinent, Xinjiang, Mongolia, is a largest lithosphere convergence place in the world, which characterized by continent\|continent collision with a thick crust and lithosphere. The high resolution seismic surface wave tomographic inversion has been conducted for studying the 3D velocity structure of crust and upper mantle in those areas. The seismic surface waveform data are from the archives of the CDSN, GSN and GEOSCOPE. About 2400 long period surface waveform recordings are available for both dispersion and waveform tomographic inversion. The block inversion by grid 1°×1°in Qinghai—Tibet plateau and 2°×2°in the surrounding areas were adapted. The resulting maps show the high resolution 3D shear wave velocity variation from earth’s surface to 400km depth.展开更多
The Cenozoic Yanyuan basin is located in the huge Longmenshan—Jinpingshan nappetectonic belt along the eastern margin of the Qinghai—Tibet plateau. The basin is the largest and the best\|preserved intraorogenic basi...The Cenozoic Yanyuan basin is located in the huge Longmenshan—Jinpingshan nappetectonic belt along the eastern margin of the Qinghai—Tibet plateau. The basin is the largest and the best\|preserved intraorogenic basin above 2300m ASL.The basin has deposited different kinds of sediments with 1600m in depth. The early Tertiary strata were first named as Lijiang formation in 1961, and later named as Hongyanzi formation. The later Tertiary strata, the lignite\|bearing strata, were once named as Xigeda formation. Li Yougheng(1978) found some mammal fossils in the strata, so they named it Yanyuan formation. The Hongyanzi Formation which thickness is 1022m can be divided into five members according to the lithologic characters. The first one is mainly made of purplish\|red coarse conglomerates. The composition of gravel mainly consists of limestone and purplish\|red sandstone and marl. The second one consists of sandstone interbedded with conglomerate. The member has three cyclic sequences from conglomerate to sandstone. The composition of gravel of this member is mainly limestone. From bottom to top the degree of sorting and roundness tends to be well. In sandstones or sand lenticules the oblique bedding and trough cross\|bedding can be seen. The third one is the member of sandstone and mudstone. The sandstone is light purple while the mudstone is purplish red. Ripple marks can be seen in the sandstone. The forth one consists of conglomerate interbedded with mudstone, The conglomerate and the sandstone assume three cyclic sequences. The composition of the gravel is chiefly limestone. The fifth one is a member of light purple massive conglomerate. The composition of the gravel is limestone. The imbricate structure can be seen in the conglomerate. The strata belong to later Eocene epoch in accordance with the fossils of mammals, plants and ostracoda in it.展开更多
Finite strain patterns of rocks The structural styles and crustal shortening in the northern margin of Qinghai—Tibet plateau are examined by systematic finite strain measurements. The finite strain patterns in this a...Finite strain patterns of rocks The structural styles and crustal shortening in the northern margin of Qinghai—Tibet plateau are examined by systematic finite strain measurements. The finite strain patterns in this area are of following characteristics:① The orientation of & principal axes of strain ellipsoid varies regularly in regard to different tectonic locations. In fact, most of the measured X axes are parallel to the regional structure lines, striking east\|west or approximately east\|west with some X axes trending northeast\|southwest. The measured Z\|axes are approximately at right angle to the regional structure lines, trending north\|northeast or north\|northwest.② The Flinn parameter k is higher in the northern and southern margins of the basin than that in the basin center, indicating that the margins of basin experienced extensional strain and the middle of basin undergo strain.③ Rocks of different age possess different strain state and show k value of 1~2 for Tertiary rocks, 3~4 for Jurassic—Cretaceous rocks. The k value of the basement rocks is the highest of all.展开更多
The Northeastern margin of Qinghai—Tibet plateau,here refers to the region bounded by Western Qinling fault zone and Longshoushan—Liupanshan tectonic zone, where obliquely compression deformation occurred with the N...The Northeastern margin of Qinghai—Tibet plateau,here refers to the region bounded by Western Qinling fault zone and Longshoushan—Liupanshan tectonic zone, where obliquely compression deformation occurred with the NE\|trending maximum principle axis of stress, with Ordos Massif to the east, Alaxa Block to the north, and Qinghai—Tibet plateau to the southwest. The main structure in this region is Haiyuan—Gulang transpression zone. It consists of a series of active faults: the Haiyuan fault zone, the Tianjingshan fault zone, the Yantongshan fault zone and the Niushoushan—Luoshan fault zone.展开更多
The scientific research on Qinghai—Tibet Plateau has already been the hot and key point on the plateau evolvement, the earth ecological variety, as well as the society harmonious development. The research on Qinghai...The scientific research on Qinghai—Tibet Plateau has already been the hot and key point on the plateau evolvement, the earth ecological variety, as well as the society harmonious development. The research on Qinghai—Tibet Plateau has the following characteristics:(1) 4\|dimension of time and space: with a vast territory and very deep depth, as well as the big time span.(2) Wide fields and across subjects: including geology, environment, ecology, climate, land, agriculture, forestry, animal husbandry, etc.(3) Theory and practice with profound and lasting influence: the research results can be great function for the direction in understanding the world, ecological environment and the human living conditions.The current issues of the research on Qinghai—Tibet Plateau are as follows:(1) Thousands of papers concerned about Qinghai—Tibet Plateau are lack of quantification data, and the research results are not displayed vividly.(2) The study scopes are more in the portion and less in the whole.(3) There are not enough work of combination of depth study with surface study, the representation in 3\|D is limited.(4) The study of time variation is not enough and there is poor way to show the time series results.(5) There are not enough work in the different specialties intercross, as well as the synthesis study of interdisciplinary subjects and cross subjects.展开更多
Based on the studies of geology and geochemistry, A’nymaque—Mianlue limited oceanic basin is comparable to the Paleo\|Tethys on time, sedimentary, biocoenosis, and the type of ophiolite (Coleman, 1984; Deng, 1984; X...Based on the studies of geology and geochemistry, A’nymaque—Mianlue limited oceanic basin is comparable to the Paleo\|Tethys on time, sedimentary, biocoenosis, and the type of ophiolite (Coleman, 1984; Deng, 1984; Xu, 1996;Chenliang, 1999). The A’nyemaqen—Mianlue oceanic basin was one of a northeast branches of Paleo\|Tethys (Zhang Guowei, 1995; 1996) .Our researches on deformations reveal that tectonic styles of the Southwest Qinling orogenic belt is obviously influenced by the dynamics of Qinghai—Tibet plateau.Structural deformation analysis suggested that the southwest part of Qinling have undergone 3 major deformation stages in Mesozoic and Cenozoic. Firstly, rock folding at deep\|middle tectonic level and progressively thrusting shearing characterized the deformation of collision. The thrust tectonics are south\|directed, such as A’nymaque, Wenxian—Kangxian and Mianlue thrusting systems, and the deformations took place in T\-2—T\-3. Secondly, the middle\|tectonic level thrusting and sinistral strike\|slip formed at early intracontinental period (J—K), the thrust tectonics was south\|directed and the regional penetrative left\|lateral slips were NW or NWW. Finally, the east\|west extensional deformations which occurred in late Mesozoic and Cenozoic, a series of north\|south directing basins came into being in this stage, Huixian—Chengxian basin and Lixian basin for example, which overlapped the former deformation styles.展开更多
The uplift history has been becoming the key for the geological science of Qinghai—Tibet plateau. The scholars abroad have reconstructed uplift history of the plateau by studying geological process of the inner globe...The uplift history has been becoming the key for the geological science of Qinghai—Tibet plateau. The scholars abroad have reconstructed uplift history of the plateau by studying geological process of the inner globe, they considered that the altitude of the plateau got up to the maximum at 14Ma (M.Coleman et al, 1995; S.Turner et al, 1993)or the plateau got to the present elevation at about 8Ma (T.M.Harrison,1992). The Chinese geologists make use of substitutes of outer environmental elements to deduce that the uplift of Qinghai—Tibet plateau began from 3 4Ma(Li Jijun,1995). It is obvious that there are the different views and controversies about the plateau uplift history.展开更多
Recently, this study group established “the map of MOHO\|surface bathymetric line in Chinese and Near Region" on the basis of latest survey and study of the crustal depth, the preliminary result shows that the r...Recently, this study group established “the map of MOHO\|surface bathymetric line in Chinese and Near Region" on the basis of latest survey and study of the crustal depth, the preliminary result shows that the regular meridional and latitudinal upwarping and downwarping structural pattern of MOHO\|surface bathymetric line among Eurasian plate and Pacific plate and the Indian plate alternately appears, and which is accreted and coupled with basin ridge structure that exist shallow crustal base, continental crust and oceanic crust and others regular upwarping and downwarping net structure system that possessing different block characters and different scales exist together. Among different structure systems, it occurs that ramp downwarping impetus transform structure belts whose trends is characteristic. Nowadays upwarping and downwarping net structure system is basically modeled in Himalayan orogeny period. It is showed that the Earth revolution way has been changed in this period, which leaded to a new Earth dynamics cycle.The pattern of upwarping and downwarping structure among different structure systems or different structure blocks , and the characters of different trends and different scale transform structure belts, reflects the structure movement way and their conversion law, and reveals the Earth centralized dynamics mechanics that is produced by the revolutionary effect under the environments of aster system. This can be clearly reflected by the change of impetus way between Qinghai—Tibet highland structure system and near structure system.展开更多
A geophysical survey including Magnetotelluric sounding(MT), gravity and geomagnetism was carried out in eastern region of Qinghai—Tibet plateau in 1998. It is to be known from tectonic map that study area was divide...A geophysical survey including Magnetotelluric sounding(MT), gravity and geomagnetism was carried out in eastern region of Qinghai—Tibet plateau in 1998. It is to be known from tectonic map that study area was divided into four blocks by three large sutures, but we have very little information on deep\|seated structure which have close relationship with evolution of Tibet plateau, our purpose is to find some deep crustal structure evidences of the blocks and sutures for understanding deep tectonic feature in this region. The geophysical survey region is located in about 97~98°E and 35~26°N, the profile with the length of 760km runs through Bayanhar, Qingtang and Gandise block in NS direction, 349 gravity and geomagnetic data were acquired simultaneously, and 31 MT sites are be placed along the profile with about 18km\|interval to detect electrical conductive feature.展开更多
文摘Located in the northern margin of the Qinghai—Tibet Plateau, the Longshoushan Mt. is a small block between Qinghai—Tibet Landmass and Alashan Landmass.Traditional tectonic viewpoint does not consider that the Longshoushan Mt. is a single tectonic block. It is quite evident that there is only a hazy idea about the Longshoushan block. Though there is a very complex tectonic region between Qinghai—Tibet Landmass and Alashan Landmass, the Longshoushan block in the region shows unique tectonic landforms, deep structures and uplift mechanisms. Researching into the relationship between the Longshoushan block and the Qinghai—Tibet and Alashan Landmasses will contribute to the realization of boundary and orogenic belt on the northern margin of the Qinghai—Tibet block. It is a very important scientific subject.The Longshoushan Mt., longer than 150km in NWW direction and wider than 10km, is located on the northern side of Hexi corridor(100 5°~102 5°E,38 5°~39 3°N). It extends from the northwest of Zhangye to Hexibu, and from the south of Chaoshui basin to the north of Minle basin. From west to east, there are the highest peak, Dongdashan Mt.(3616m), the second peak, Dufengding(2937m) and Qianshan peak(2827m), height of the mountains is getting lower and lower, mean height above sea level is over 2000m, and relative height difference is about 1000m. The Longshoushan Mt. provides a natural defence for stopping the southward migration of sandstorm in the Hexi corridor, and forms a topographic step zone from the Alashan Plateau to the Qinghai—Tibet Plateau. In the Longshoushan area, developed landforms, such as planation surface, table\|land, terrace land, are general characters of all geomorphic units. It is shown that the Longshoushan Mt. is a intermittently uplifted block. An astonishingly similar of geometric patterns of Taohualashan Mt. and Hongshihu basin is very interesting natural landscape in the area. It is suggested that Taohualashan Mt. broke away from Hongshihu Basin in secular tectonic movement. The viewpoint is supported by major formation, lithofacies, limitation and style of active faulting. The Longshoushan block consists of two major active fault zones (the northern Longshoushan fault zone and the southern Longshoushan fault zone), the active Pingshanhu—Hongshihu fault basin belt and Taohualashan—Xieposhan tectonic uplift belt. In addition, there are the NNW\|trending West Polamading fault, NWW\|trending Maohudong fault trough, NNE\|trending Daxiahe rift valley and others on the block. the activity and formation style of these structures indicate that the block is acted not only by compressive stress, but also by tensile stress. The northern Longshoushan and southern Longshoushan fault zones are closely related to formation and evolution of the Longshoushan block, the two zones are active fault zones since late Pleistocene and boundary fault zones of the block. The genesis and activity style of the Pingshanhu\|Hongshihu basin are similar to the continental rift, which may be due to the mantle uplift.
文摘The Qinghai—Tibet plateau and its surrounding areas including Indian subcontinent, Xinjiang, Mongolia, is a largest lithosphere convergence place in the world, which characterized by continent\|continent collision with a thick crust and lithosphere. The high resolution seismic surface wave tomographic inversion has been conducted for studying the 3D velocity structure of crust and upper mantle in those areas. The seismic surface waveform data are from the archives of the CDSN, GSN and GEOSCOPE. About 2400 long period surface waveform recordings are available for both dispersion and waveform tomographic inversion. The block inversion by grid 1°×1°in Qinghai—Tibet plateau and 2°×2°in the surrounding areas were adapted. The resulting maps show the high resolution 3D shear wave velocity variation from earth’s surface to 400km depth.
文摘The Cenozoic Yanyuan basin is located in the huge Longmenshan—Jinpingshan nappetectonic belt along the eastern margin of the Qinghai—Tibet plateau. The basin is the largest and the best\|preserved intraorogenic basin above 2300m ASL.The basin has deposited different kinds of sediments with 1600m in depth. The early Tertiary strata were first named as Lijiang formation in 1961, and later named as Hongyanzi formation. The later Tertiary strata, the lignite\|bearing strata, were once named as Xigeda formation. Li Yougheng(1978) found some mammal fossils in the strata, so they named it Yanyuan formation. The Hongyanzi Formation which thickness is 1022m can be divided into five members according to the lithologic characters. The first one is mainly made of purplish\|red coarse conglomerates. The composition of gravel mainly consists of limestone and purplish\|red sandstone and marl. The second one consists of sandstone interbedded with conglomerate. The member has three cyclic sequences from conglomerate to sandstone. The composition of gravel of this member is mainly limestone. From bottom to top the degree of sorting and roundness tends to be well. In sandstones or sand lenticules the oblique bedding and trough cross\|bedding can be seen. The third one is the member of sandstone and mudstone. The sandstone is light purple while the mudstone is purplish red. Ripple marks can be seen in the sandstone. The forth one consists of conglomerate interbedded with mudstone, The conglomerate and the sandstone assume three cyclic sequences. The composition of the gravel is chiefly limestone. The fifth one is a member of light purple massive conglomerate. The composition of the gravel is limestone. The imbricate structure can be seen in the conglomerate. The strata belong to later Eocene epoch in accordance with the fossils of mammals, plants and ostracoda in it.
文摘Finite strain patterns of rocks The structural styles and crustal shortening in the northern margin of Qinghai—Tibet plateau are examined by systematic finite strain measurements. The finite strain patterns in this area are of following characteristics:① The orientation of & principal axes of strain ellipsoid varies regularly in regard to different tectonic locations. In fact, most of the measured X axes are parallel to the regional structure lines, striking east\|west or approximately east\|west with some X axes trending northeast\|southwest. The measured Z\|axes are approximately at right angle to the regional structure lines, trending north\|northeast or north\|northwest.② The Flinn parameter k is higher in the northern and southern margins of the basin than that in the basin center, indicating that the margins of basin experienced extensional strain and the middle of basin undergo strain.③ Rocks of different age possess different strain state and show k value of 1~2 for Tertiary rocks, 3~4 for Jurassic—Cretaceous rocks. The k value of the basement rocks is the highest of all.
文摘The Northeastern margin of Qinghai—Tibet plateau,here refers to the region bounded by Western Qinling fault zone and Longshoushan—Liupanshan tectonic zone, where obliquely compression deformation occurred with the NE\|trending maximum principle axis of stress, with Ordos Massif to the east, Alaxa Block to the north, and Qinghai—Tibet plateau to the southwest. The main structure in this region is Haiyuan—Gulang transpression zone. It consists of a series of active faults: the Haiyuan fault zone, the Tianjingshan fault zone, the Yantongshan fault zone and the Niushoushan—Luoshan fault zone.
文摘The scientific research on Qinghai—Tibet Plateau has already been the hot and key point on the plateau evolvement, the earth ecological variety, as well as the society harmonious development. The research on Qinghai—Tibet Plateau has the following characteristics:(1) 4\|dimension of time and space: with a vast territory and very deep depth, as well as the big time span.(2) Wide fields and across subjects: including geology, environment, ecology, climate, land, agriculture, forestry, animal husbandry, etc.(3) Theory and practice with profound and lasting influence: the research results can be great function for the direction in understanding the world, ecological environment and the human living conditions.The current issues of the research on Qinghai—Tibet Plateau are as follows:(1) Thousands of papers concerned about Qinghai—Tibet Plateau are lack of quantification data, and the research results are not displayed vividly.(2) The study scopes are more in the portion and less in the whole.(3) There are not enough work of combination of depth study with surface study, the representation in 3\|D is limited.(4) The study of time variation is not enough and there is poor way to show the time series results.(5) There are not enough work in the different specialties intercross, as well as the synthesis study of interdisciplinary subjects and cross subjects.
文摘Based on the studies of geology and geochemistry, A’nymaque—Mianlue limited oceanic basin is comparable to the Paleo\|Tethys on time, sedimentary, biocoenosis, and the type of ophiolite (Coleman, 1984; Deng, 1984; Xu, 1996;Chenliang, 1999). The A’nyemaqen—Mianlue oceanic basin was one of a northeast branches of Paleo\|Tethys (Zhang Guowei, 1995; 1996) .Our researches on deformations reveal that tectonic styles of the Southwest Qinling orogenic belt is obviously influenced by the dynamics of Qinghai—Tibet plateau.Structural deformation analysis suggested that the southwest part of Qinling have undergone 3 major deformation stages in Mesozoic and Cenozoic. Firstly, rock folding at deep\|middle tectonic level and progressively thrusting shearing characterized the deformation of collision. The thrust tectonics are south\|directed, such as A’nymaque, Wenxian—Kangxian and Mianlue thrusting systems, and the deformations took place in T\-2—T\-3. Secondly, the middle\|tectonic level thrusting and sinistral strike\|slip formed at early intracontinental period (J—K), the thrust tectonics was south\|directed and the regional penetrative left\|lateral slips were NW or NWW. Finally, the east\|west extensional deformations which occurred in late Mesozoic and Cenozoic, a series of north\|south directing basins came into being in this stage, Huixian—Chengxian basin and Lixian basin for example, which overlapped the former deformation styles.
文摘The uplift history has been becoming the key for the geological science of Qinghai—Tibet plateau. The scholars abroad have reconstructed uplift history of the plateau by studying geological process of the inner globe, they considered that the altitude of the plateau got up to the maximum at 14Ma (M.Coleman et al, 1995; S.Turner et al, 1993)or the plateau got to the present elevation at about 8Ma (T.M.Harrison,1992). The Chinese geologists make use of substitutes of outer environmental elements to deduce that the uplift of Qinghai—Tibet plateau began from 3 4Ma(Li Jijun,1995). It is obvious that there are the different views and controversies about the plateau uplift history.
文摘Recently, this study group established “the map of MOHO\|surface bathymetric line in Chinese and Near Region" on the basis of latest survey and study of the crustal depth, the preliminary result shows that the regular meridional and latitudinal upwarping and downwarping structural pattern of MOHO\|surface bathymetric line among Eurasian plate and Pacific plate and the Indian plate alternately appears, and which is accreted and coupled with basin ridge structure that exist shallow crustal base, continental crust and oceanic crust and others regular upwarping and downwarping net structure system that possessing different block characters and different scales exist together. Among different structure systems, it occurs that ramp downwarping impetus transform structure belts whose trends is characteristic. Nowadays upwarping and downwarping net structure system is basically modeled in Himalayan orogeny period. It is showed that the Earth revolution way has been changed in this period, which leaded to a new Earth dynamics cycle.The pattern of upwarping and downwarping structure among different structure systems or different structure blocks , and the characters of different trends and different scale transform structure belts, reflects the structure movement way and their conversion law, and reveals the Earth centralized dynamics mechanics that is produced by the revolutionary effect under the environments of aster system. This can be clearly reflected by the change of impetus way between Qinghai—Tibet highland structure system and near structure system.
文摘A geophysical survey including Magnetotelluric sounding(MT), gravity and geomagnetism was carried out in eastern region of Qinghai—Tibet plateau in 1998. It is to be known from tectonic map that study area was divided into four blocks by three large sutures, but we have very little information on deep\|seated structure which have close relationship with evolution of Tibet plateau, our purpose is to find some deep crustal structure evidences of the blocks and sutures for understanding deep tectonic feature in this region. The geophysical survey region is located in about 97~98°E and 35~26°N, the profile with the length of 760km runs through Bayanhar, Qingtang and Gandise block in NS direction, 349 gravity and geomagnetic data were acquired simultaneously, and 31 MT sites are be placed along the profile with about 18km\|interval to detect electrical conductive feature.
基金the National Key Research and Development Program of China[grant number 2018YFA0606403]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA23090102]the National Natural Science Foundation of China[grant number 41822502].