An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal str...An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal stress in the solid. The fractional four-step finite element method and the streamline upwind Petrov-Galerkin (SUPG) method are used to analyze the viscous thermal flow in the fluid. Analyses of the heat transfer and the thermal stress in the solid axe performed by the Galerkin method. The second-order semi- implicit Crank-Nicolson scheme is used for the time integration. The resulting nonlinear equations are lineaxized to improve the computational efficiency. The integrated analysis method uses a three-node triangular element with equal-order interpolation functions for the fluid velocity components, the pressure, the temperature, and the solid displacements to simplify the overall finite element formulation. The main advantage of the present method is to consistently couple the heat transfer along the fluid-solid interface. Results of several tested problems show effectiveness of the present finite element method, which provides insight into the integrated fluid-thermal-structural interaction phenomena.展开更多
[Objectives] To observe the effectiveness of four-step tendon manipulation in the treatment of thumb stenotic tenosynovitis, under the guidance of "tendon first" theory. [Methods] 30 patients with stenotic t...[Objectives] To observe the effectiveness of four-step tendon manipulation in the treatment of thumb stenotic tenosynovitis, under the guidance of "tendon first" theory. [Methods] 30 patients with stenotic tenosynovitis of thumb were treated with four-step tendon manipulation and traditional manipulation respectively, 3 times a week, a total of two weeks. The clinical efficacy, changes of visual analogue scale (VAS) and the recurrence rate after 15 d of follow-up treatment were observed before and after treatment. The differences were statistically significant ( P <0.05). [Results] After treatment, the VAS and the recurrence rate after 15 d of treatment in the observation group were significantly lower than those in the control group ( P <0.05). After treatment, the total effective rate was 73.33% in the control group and 93.33% in the observation group ( P <0.05). [Conclusions] The effect of four-step tendon regulating manipulation in the treatment of thumb stenotic tenosynovitis is ideal. The effect is significantly better than that of traditional Chinese medicine in improving thumb pain and function, which is worthy of clinical promotion.展开更多
By numerically solving the semiconductor Bloch equation(SBEs),we theoretically study the high-harmonic generation of ZnO crystals driven by one-color and two-color intense laser pulses.The results show the enhancement...By numerically solving the semiconductor Bloch equation(SBEs),we theoretically study the high-harmonic generation of ZnO crystals driven by one-color and two-color intense laser pulses.The results show the enhancement of harmonics and the cut-off remains the same in the two-color field,which can be explained by the recollision trajectories and electron excitation from multi-channels.Based on the quantum path analysis,we investigate contribution of different ranges of the crystal momentum k of ZnO to the harmonic yield,and find that in two-color laser fields,the intensity of the harmonic yield of different ranges from the crystal momentum makes a big difference and the harmonic intensity is depressed from all k channels,which is related to the interferences between harmonics from symmetric k channels.展开更多
High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduce...High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.展开更多
基金the National Metal and Materials Technology Centerthe Thailand Research Fund+1 种基金the Office of Higher Education Commissionthe Chulalongkorn University for supporting the present research
文摘An integrated fluid-thermal-structural analysis approach is presented. In this approach, the heat conduction in a solid is coupled with the heat convection in the viscous flow of the fluid resulting in the thermal stress in the solid. The fractional four-step finite element method and the streamline upwind Petrov-Galerkin (SUPG) method are used to analyze the viscous thermal flow in the fluid. Analyses of the heat transfer and the thermal stress in the solid axe performed by the Galerkin method. The second-order semi- implicit Crank-Nicolson scheme is used for the time integration. The resulting nonlinear equations are lineaxized to improve the computational efficiency. The integrated analysis method uses a three-node triangular element with equal-order interpolation functions for the fluid velocity components, the pressure, the temperature, and the solid displacements to simplify the overall finite element formulation. The main advantage of the present method is to consistently couple the heat transfer along the fluid-solid interface. Results of several tested problems show effectiveness of the present finite element method, which provides insight into the integrated fluid-thermal-structural interaction phenomena.
文摘[Objectives] To observe the effectiveness of four-step tendon manipulation in the treatment of thumb stenotic tenosynovitis, under the guidance of "tendon first" theory. [Methods] 30 patients with stenotic tenosynovitis of thumb were treated with four-step tendon manipulation and traditional manipulation respectively, 3 times a week, a total of two weeks. The clinical efficacy, changes of visual analogue scale (VAS) and the recurrence rate after 15 d of follow-up treatment were observed before and after treatment. The differences were statistically significant ( P <0.05). [Results] After treatment, the VAS and the recurrence rate after 15 d of treatment in the observation group were significantly lower than those in the control group ( P <0.05). After treatment, the total effective rate was 73.33% in the control group and 93.33% in the observation group ( P <0.05). [Conclusions] The effect of four-step tendon regulating manipulation in the treatment of thumb stenotic tenosynovitis is ideal. The effect is significantly better than that of traditional Chinese medicine in improving thumb pain and function, which is worthy of clinical promotion.
基金the National Natural ScienceFoundation of China (Grant No. 12074146)the NaturalScience Foundation of Jilin Province, China (GrantNo. 20220101010JC).
文摘By numerically solving the semiconductor Bloch equation(SBEs),we theoretically study the high-harmonic generation of ZnO crystals driven by one-color and two-color intense laser pulses.The results show the enhancement of harmonics and the cut-off remains the same in the two-color field,which can be explained by the recollision trajectories and electron excitation from multi-channels.Based on the quantum path analysis,we investigate contribution of different ranges of the crystal momentum k of ZnO to the harmonic yield,and find that in two-color laser fields,the intensity of the harmonic yield of different ranges from the crystal momentum makes a big difference and the harmonic intensity is depressed from all k channels,which is related to the interferences between harmonics from symmetric k channels.
基金supported by the Natural Science Foundation of Jilin Province (Grant No.20220101010JC)the National Natural Science Foundation of China (Grant No.12074146)。
文摘High harmonic generation in ZnO crystals under chirped single-color field and static electric field are investigated by solving the semiconductor Bloch equation(SBE). It is found that when the chirp pulse is introduced, the interference structure becomes obvious while the harmonic cutoff is not extended. Furthermore, the harmonic efficiency is improved when the static electric field is included. These phenomena are demonstrated by the classical recollision model in real space affected by the waveform of laser field and inversion symmetry. Specifically, the electron motion in k-space shows that the change of waveform and the destruction of the symmetry of the laser field lead to the incomplete X-structure of the crystal-momentum-resolved(k-resolved) inter-band harmonic spectrum. Furthermore, a pre-acceleration process in the solid four-step model is confirmed.