This paper presents a novel framework for understanding time as an emergent phenomenon arising from quantum information dynamics. We propose that the flow of time and its directional arrow are intrinsically linked to ...This paper presents a novel framework for understanding time as an emergent phenomenon arising from quantum information dynamics. We propose that the flow of time and its directional arrow are intrinsically linked to the growth of quantum complexity and the evolution of entanglement entropy in physical systems. By integrating principles from quantum mechanics, information theory, and holography, we develop a comprehensive theory that explains how time can emerge from timeless quantum processes. Our approach unifies concepts from quantum mechanics, general relativity, and thermodynamics, providing new perspectives on longstanding puzzles such as the black hole information paradox and the arrow of time. We derive modified Friedmann equations that incorporate quantum information measures, offering novel insights into cosmic evolution and the nature of dark energy. The paper presents a series of experimental proposals to test key aspects of this theory, ranging from quantum simulations to cosmological observations. Our framework suggests a deeply information-theoretic view of the universe, challenging our understanding of the nature of reality and opening new avenues for technological applications in quantum computing and sensing. This work contributes to the ongoing quest for a unified theory of quantum gravity and information, potentially with far-reaching implications for our understanding of space, time, and the fundamental structure of the cosmos.展开更多
The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or mom...The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.展开更多
In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Th...In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.展开更多
Time series classification(TSC)has attracted a lot of attention for time series data mining tasks and has been applied in various fields.With the success of deep learning(DL)in computer vision recognition,people are s...Time series classification(TSC)has attracted a lot of attention for time series data mining tasks and has been applied in various fields.With the success of deep learning(DL)in computer vision recognition,people are starting to use deep learning to tackle TSC tasks.Quantum neural networks(QNN)have recently demonstrated their superiority over traditional machine learning in methods such as image processing and natural language processing,but research using quantum neural networks to handle TSC tasks has not received enough attention.Therefore,we proposed a learning framework based on multiple imaging and hybrid QNN(MIHQNN)for TSC tasks.We investigate the possibility of converting 1D time series to 2D images and classifying the converted images using hybrid QNN.We explored the differences between MIHQNN based on single time series imaging and MIHQNN based on the fusion of multiple time series imaging.Four quantum circuits were also selected and designed to study the impact of quantum circuits on TSC tasks.We tested our method on several standard datasets and achieved significant results compared to several current TSC methods,demonstrating the effectiveness of MIHQNN.This research highlights the potential of applying quantum computing to TSC and provides the theoretical and experimental background for future research.展开更多
We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine ...We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine is alternatively driven by a hot boson bath of inverse temperatureβ_(h)and a cold boson bath at inverse temperatureβ_(c)(>βh).While for the engine model the hot bath is constructed to be squeezed,in the refrigeration cycle the cold bath is established to be squeezed,with squeezing parameter r.We obtain the analytical expressions for both efficiency and power in heat engines and for coefficient of performance and cooling rate in refrigerators.We find that,in the high-temperature limit,the efficiency at maximum power is bounded by the analytical valueη_(+)=√sech(2r)(1-η_(C)),and the coefficient of performance at the maximum figure of merit is limited byε_(+)=√sech(2r)(1+ε_(C))/sech(2r)(1+ε_(C))-εC)-1,whereη_(C)=1-β_(h)/β_(c)andε_(C)=β_(h)/(β_(c)-β_(h))are the respective Carnot values of the engines and refrigerators.These analytical results are identical to those obtained from the Carnot engines based on harmonic systems,indicating that the efficiency at maximum power and coefficient at maximum figure of merit are independent of the working substance.展开更多
目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信...目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信噪比(SNR)。比较四组图像主观质量评分。分析不同部位CT值、SD、SNR与图像主观质量评分的相关性。结果:B组的延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于A组;C组的延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值高于A组;D组延髓、额叶灰质、颞肌肌肉CT值明显低于A组,脑室、额叶白质、小脑外侧CT值明显高于A组;C组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于C组;D组脑室CT值明显高于C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值明显低于A组;C组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值均明显高于B组;C组额叶灰质SD明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、肌肉SD均明显低于B组、C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR均明显高于A组;C组、D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR值明显高于B组;C组、D组脑室SNR明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR明显高于C组,差异有统计学意义(P<0.05)。D组图像主观质量评分最高,差异有统计学意义(P<0.05)。延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧及颞肌肌肉SD与主观质量评分呈明显负相关,SNR与主观质量评分间呈明显正相关,差异有统计学意义(P<0.05)。结论:利用Brain Time Stack图像融合技术对头部CT扫描检查图像处理,动脉期结合前一期及后一期的图像数据在处理后具有更好的质量和更少的噪音。展开更多
Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investi...Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity.展开更多
We investigate the real-time dynamical properties of Rabi-type oscillation through strongly correlated quantum-dot systems by means of accurate hierarchical equations of motion.It is an extension of the hierarchical L...We investigate the real-time dynamical properties of Rabi-type oscillation through strongly correlated quantum-dot systems by means of accurate hierarchical equations of motion.It is an extension of the hierarchical Liouville-space approach for addressing strongly correlated quantum-dot systems.We study two paradigmatic models,the single quantum-dot system,and serial coupling double quantum-dot system.We calculate accurately the time-dependent occupancy of quantum-dot systems subject to a sudden change of gate voltage.The Rabi-type oscillation of the occupancy and distinct relaxation time of the quantum-dot systems with different factors are described.This is helpful to understand dissipation and decoherence in real-time dynamics through nanodevices and provides a theoretical frame to experimental investigation and manipulation of molecular electronic devices.展开更多
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab...Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e...Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors.Since geometric quantum gate is naturally insensitivity to noise,it appears to be a prom...One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors.Since geometric quantum gate is naturally insensitivity to noise,it appears to be a promising routine to achieve high-fidelity,robust quantum gates.The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels.Moreover,traditional geometric schemes usually take more time than equivalent dynamical ones.Here,we experimentally demonstrate a geometric gate scheme with the time-optimal control(TOC)technique in a superconducting quantum circuit.With a transmon qubit and operations restricted to two computational levels,we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts.The measured fidelities of TOC X gate and X/2 gate are 99.81%and 99.79%respectively.Our work shows a promising routine toward scalable fault-tolerant quantum computation.展开更多
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in...We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.展开更多
文摘This paper presents a novel framework for understanding time as an emergent phenomenon arising from quantum information dynamics. We propose that the flow of time and its directional arrow are intrinsically linked to the growth of quantum complexity and the evolution of entanglement entropy in physical systems. By integrating principles from quantum mechanics, information theory, and holography, we develop a comprehensive theory that explains how time can emerge from timeless quantum processes. Our approach unifies concepts from quantum mechanics, general relativity, and thermodynamics, providing new perspectives on longstanding puzzles such as the black hole information paradox and the arrow of time. We derive modified Friedmann equations that incorporate quantum information measures, offering novel insights into cosmic evolution and the nature of dark energy. The paper presents a series of experimental proposals to test key aspects of this theory, ranging from quantum simulations to cosmological observations. Our framework suggests a deeply information-theoretic view of the universe, challenging our understanding of the nature of reality and opening new avenues for technological applications in quantum computing and sensing. This work contributes to the ongoing quest for a unified theory of quantum gravity and information, potentially with far-reaching implications for our understanding of space, time, and the fundamental structure of the cosmos.
文摘The frequency of any periodic event can be defined in terms of units of Time. Planck constructed a unit of time called the Plank time from other physical constants. Vyasa defined a natural unit of time, kshana, or moment based on the motion of a fundamental particle. It is the time taken by an elementary particle, to change its direction from east to north. According to Vyasa, kshana is discrete, exceedingly small, indivisible, and is a constant time quantum. When the intrinsic spin angular momentum of an electron was related to the angular momentum of a simple thin circular plate, spherical shell, and solid sphere model of an electron, we found that the value of kshana in seconds was equal to ten to a power of minus twenty-one second. The disc model for the spinning electron provides an accurate value of the number of kshanas per second as determined previously and compared with other spinning models of electrons. These results indicate that the disk-like model of spinning electrons is the correct model for electrons. Vyasa’s definition of kshana opens the possibility of a new foundation for the theory of physical time, and perspectives in theoretical and philosophical research.
文摘In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61772295 and 61572270)the PHD foundation of Chongqing Normal University (Grant No.19XLB003)Chongqing Technology Foresight and Institutional Innovation Project (Grant No.cstc2021jsyjyzysbAX0011)。
文摘Time series classification(TSC)has attracted a lot of attention for time series data mining tasks and has been applied in various fields.With the success of deep learning(DL)in computer vision recognition,people are starting to use deep learning to tackle TSC tasks.Quantum neural networks(QNN)have recently demonstrated their superiority over traditional machine learning in methods such as image processing and natural language processing,but research using quantum neural networks to handle TSC tasks has not received enough attention.Therefore,we proposed a learning framework based on multiple imaging and hybrid QNN(MIHQNN)for TSC tasks.We investigate the possibility of converting 1D time series to 2D images and classifying the converted images using hybrid QNN.We explored the differences between MIHQNN based on single time series imaging and MIHQNN based on the fusion of multiple time series imaging.Four quantum circuits were also selected and designed to study the impact of quantum circuits on TSC tasks.We tested our method on several standard datasets and achieved significant results compared to several current TSC methods,demonstrating the effectiveness of MIHQNN.This research highlights the potential of applying quantum computing to TSC and provides the theoretical and experimental background for future research.
基金the National Natural Science Foundation of China(Grant No.11875034)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
文摘We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine is alternatively driven by a hot boson bath of inverse temperatureβ_(h)and a cold boson bath at inverse temperatureβ_(c)(>βh).While for the engine model the hot bath is constructed to be squeezed,in the refrigeration cycle the cold bath is established to be squeezed,with squeezing parameter r.We obtain the analytical expressions for both efficiency and power in heat engines and for coefficient of performance and cooling rate in refrigerators.We find that,in the high-temperature limit,the efficiency at maximum power is bounded by the analytical valueη_(+)=√sech(2r)(1-η_(C)),and the coefficient of performance at the maximum figure of merit is limited byε_(+)=√sech(2r)(1+ε_(C))/sech(2r)(1+ε_(C))-εC)-1,whereη_(C)=1-β_(h)/β_(c)andε_(C)=β_(h)/(β_(c)-β_(h))are the respective Carnot values of the engines and refrigerators.These analytical results are identical to those obtained from the Carnot engines based on harmonic systems,indicating that the efficiency at maximum power and coefficient at maximum figure of merit are independent of the working substance.
文摘目的:分析Brain Time Stack图像融合技术在CT中的应用。方法:选取2021年3月—2022年9月衡水市第四人民医院收治的50例CT检查患者作为研究对象。所有患者进行CT检查并进行Brain Time Stack后处理。比较四组不同部位CT值、标准差(SD)、信噪比(SNR)。比较四组图像主观质量评分。分析不同部位CT值、SD、SNR与图像主观质量评分的相关性。结果:B组的延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于A组;C组的延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值高于A组;D组延髓、额叶灰质、颞肌肌肉CT值明显低于A组,脑室、额叶白质、小脑外侧CT值明显高于A组;C组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显高于B组;D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉CT值明显低于C组;D组脑室CT值明显高于C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值明显低于A组;C组延髓、脑室、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SD值均明显高于B组;C组额叶灰质SD明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、肌肉SD均明显低于B组、C组,差异有统计学意义(P<0.05)。B组、C组、D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR均明显高于A组;C组、D组延髓、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR值明显高于B组;C组、D组脑室SNR明显低于B组;D组延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧、颞肌肌肉SNR明显高于C组,差异有统计学意义(P<0.05)。D组图像主观质量评分最高,差异有统计学意义(P<0.05)。延髓、脑室、额叶灰质、额叶白质、小脑内侧、小脑外侧及颞肌肌肉SD与主观质量评分呈明显负相关,SNR与主观质量评分间呈明显正相关,差异有统计学意义(P<0.05)。结论:利用Brain Time Stack图像融合技术对头部CT扫描检查图像处理,动脉期结合前一期及后一期的图像数据在处理后具有更好的质量和更少的噪音。
文摘Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11804245,11747098,11774418,12247101,and 12047501)the Scientific and Technologial Innovation Programs of Higher Education Institutions of Shanxi Province,China (Grant No.2021L534)the Fund from the Ministry of Science and Technology of China (Grant No.2022YFA1402704)。
文摘We investigate the real-time dynamical properties of Rabi-type oscillation through strongly correlated quantum-dot systems by means of accurate hierarchical equations of motion.It is an extension of the hierarchical Liouville-space approach for addressing strongly correlated quantum-dot systems.We study two paradigmatic models,the single quantum-dot system,and serial coupling double quantum-dot system.We calculate accurately the time-dependent occupancy of quantum-dot systems subject to a sudden change of gate voltage.The Rabi-type oscillation of the occupancy and distinct relaxation time of the quantum-dot systems with different factors are described.This is helpful to understand dissipation and decoherence in real-time dynamics through nanodevices and provides a theoretical frame to experimental investigation and manipulation of molecular electronic devices.
基金supported by the National Natural Science Foundation of China(Grant No.52308340)the Innovative Projects of Universities in Guangdong(Grant No.2022KTSCX208)Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01).
文摘Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported in part by the National Natural Science Foundation of China Project under Grant 62075147the Suzhou Industry Technological Innovation Projects under Grant SYG202348.
文摘Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金Project supported by the Key Research and Development Program of Guangdong Province,China(Grant No.2018B030326001)the National Natural Science Foundation of China(Grant Nos.11474152,12074179,U21A20436,and 61521001)the Natural Science Foundation of Jiangsu Province,China(Grant No.BE2021015-1)。
文摘One of the key features required to realize fault-tolerant quantum computation is the robustness of quantum gates against errors.Since geometric quantum gate is naturally insensitivity to noise,it appears to be a promising routine to achieve high-fidelity,robust quantum gates.The implementation of geometric quantum gate however faces some troubles such as its complex interaction among multiple energy levels.Moreover,traditional geometric schemes usually take more time than equivalent dynamical ones.Here,we experimentally demonstrate a geometric gate scheme with the time-optimal control(TOC)technique in a superconducting quantum circuit.With a transmon qubit and operations restricted to two computational levels,we implement a set of geometric gates which exhibit better robustness features against control errors than the dynamical counterparts.The measured fidelities of TOC X gate and X/2 gate are 99.81%and 99.79%respectively.Our work shows a promising routine toward scalable fault-tolerant quantum computation.
基金the Natural Science Foundation of China(11922415,12274471)Guangdong Basic and Applied Basic Research Foundation(2022A1515011168,2019A1515011718,2019A1515011337)the Key Research and Development Program of Guangdong Province,China(2019B110209003).
文摘We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO_(2) reduction reaction(CO_(2)RR)via Mo–S bridging bonds sites in S_(v)–In_(2)S_(3)@2H–MoTe_(2).The X-ray absorption near-edge structure shows that the formation of S_(v)–In_(2)S_(3)@2H–MoTe_(2) adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface.The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption,time-resolved,and in situ diffuse reflectance–Infrared Fourier transform spectroscopy.A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in S_(v)–In_(2)S_(3)@2H–MoTe_(2)(5)photogenerated carrier concentration relative to pristine S_(v)–In_(2)S_(3).Benefiting from lower carrier transport activation energy,an internal quantum efficiency of 94.01%at 380 nm was used for photocatalytic CO_(2)RR.This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO_(2)RR.