High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating gen...High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating genetics and breeding in melon(Cucumis melo L.),a globally cultivated economically important horticultural crop.Based on over eight million SNPs derived from 823 representative melon accessions,16K,8K,4K,2K,1K,500,250 and 125 informative SNPs were screened and evaluated for their polymorphisms,conservation of flanking sequences,and distributions.The set of 2K SNPs was found to be optimal for representing the maximum diversity with the lowest number of SNPs,and it was selected to develop the liquid chip,named“Melon2K”.Using Melon2K,more than 1500 SNPs were detected across 17 samples of five melon cultivars,and the phylogenetic relationships were clearly constructed.Within the same cultivar,genetic differences were also assessed between different samples.We evaluated the performance of Melon2K in genetic background selection during the breeding process,obtaining the introgression lines of interested trait with more than 97%genetic background of elite variety by only two rounds of backcrossing.These results suggest that Melon2K provides a cost-effective,efficient and reliable platform for genetic analysis and molecular breeding in melon.展开更多
Compared to other melon types, oriental sweet melon (Cucumis melo var. makuwa Makino) is quite a different species with a shorter shelf-life due to its typical climacteric behavior and thin pericarp. The purpose of ...Compared to other melon types, oriental sweet melon (Cucumis melo var. makuwa Makino) is quite a different species with a shorter shelf-life due to its typical climacteric behavior and thin pericarp. The purpose of this experiment is to explore the effects of co- treatment of enhanced freshness formulation (EFF) and 1-methylcyclopropene (1-MCP) on physiological changes and the content of aroma volatile compounds introduced by them of two oriental sweet melon cultivars (Yumeiren and Tianbao) during storage. The melons were stored in incubators with temperature of 15~C and a relative humidity of 85% for 24 d during which fruit quality and related physiological index were measured. Compared to the control, both treatments delayed fruit weight loss rate and kept the fruit firmness, water content and soluble solids content. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities showed fluctuations in treated melons, while lipoxygenase (LOX) activity (P〈0.01) and malondialdehyde (MDA) content (P〈0.05) decreased compared to control. During the early stage of storage, alcohols and aldehydes were the main volatile compounds, and esters gradually increased during storage. Of all the esters, acetic esters were the main components, followed by oxalic acid esters and other esters. The total content of aroma volatile compounds, esters, alcohols and aldehydes of co-treated melons were all higher than those of 1-MCP treated and control melons. In addition, the aroma volatile peak of co-treated melons occurred later than that of 1-MCP treated and control melons. In summary, co-treatment of EFF and 1-MCP was more beneficial than 1-MCP treatment to delay ripening and senescence, maintain fruit quality, enhance shelf-life and improve levels of aroma volatile compounds.展开更多
In this work,an electronic nose was used to evaluate the different cultivars and mature stages of melons,so as to establish a scientific method to accurately distinguish the maturity and varieties of melons. Principal...In this work,an electronic nose was used to evaluate the different cultivars and mature stages of melons,so as to establish a scientific method to accurately distinguish the maturity and varieties of melons. Principal component analysis (PCA) and linear discriminant analysis (LDA ) showed that immature melons could be well distinguished from mature melons using electronic nose. When PCA method was used to analyze,electronic nose could completely classify and identify the maturity of melons. Meanwhile,the electronic nose could distinguish different varieties of melons with high discrimination value. The flavor of samples under cut or no cut conditions would slightly change,leading to the variation of discrimination value among different varieties. The samples with similar flavor under no cut condition could be analyzed through cutting mode. The research built a rapid and accurate method to judge the maturity of melons instead of man sense.展开更多
Vine decline disease (VDD) constitutes a menace to melons worldwide. Especially, the one caused by the fungus Monosporascus cannonballus. Thus, resistant plant material must be released to help growers. Hence, our goa...Vine decline disease (VDD) constitutes a menace to melons worldwide. Especially, the one caused by the fungus Monosporascus cannonballus. Thus, resistant plant material must be released to help growers. Hence, our goal was to develop resistant plant material to VDD. More than 600 melon accessions are expected to be tested for disease resistance in M. cannonballus infested soil in Weslaco, Texas, USA, to identify resistance to VDD, and other important traits. So far, at most 7 lines were found to be resistant to VDD and some of them were used to develop elite, muskmelon inbred lines by pedigree breeding following single or double backcrosses. These elite parents were crossed to each other to develop the hybrids M3 and M4. They were also tested in the same infested field in Weslaco. The hybrids were grown using standard commercial practices followed by growers and when their fruits were ready, their roots were sampled as well as scored for disease severity to estimate high and mid-parent heterosis Our results indicate the existence of heterosis regarding resistance to VDD. Thus, resistant plant material can be developed and selection for resistance can be accomplished.展开更多
The development of diversified foods such as melons under the big food concept can reduce the pressure on staple food grain.Xinjiang has the advantages of building a new development pattern of dual circulation of dive...The development of diversified foods such as melons under the big food concept can reduce the pressure on staple food grain.Xinjiang has the advantages of building a new development pattern of dual circulation of diversified food industry and establishing a national diversified food safety and high-quality assurance center.The construction of an agricultural power needs the strategic support of an intellectual property power.This paper introduced and studied Xinjiang s melon industry and its agricultural intellectual property resources,analyzed the six main problems,including many idle land resources have not been developed into melon fields and the role of melons in diversified food supply systems not well played.Finally,it proposed to vigorously develop diversified food industries such as melons in Xinjiang and establish an eight-point strategy such as national diversified food safety and high-quality assurance center.展开更多
Bitter melon(Momordica Charania L.),a member of the Cucurbitaceae family,is widely distributed across tropical and subtropical regions.Saponin,an important functional component of bitter melon,has been proven to exert...Bitter melon(Momordica Charania L.),a member of the Cucurbitaceae family,is widely distributed across tropical and subtropical regions.Saponin,an important functional component of bitter melon,has been proven to exert hypoglycemic effects similarly to insulin,and also possesses lipid-lowering properties inhibiting preadipocyte differentiation and fat synthesis^([1]).展开更多
Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present stud...Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.展开更多
[Objective] This study investigated the spatial characteristics of counties (cities) with comparative advantages in watermelon and melon production to provide reference bases in formulating strategies for the develo...[Objective] This study investigated the spatial characteristics of counties (cities) with comparative advantages in watermelon and melon production to provide reference bases in formulating strategies for the development of watermelon and melon industries in Hainan Province. [Method] By using the sowing area, total yield, and yield per unit area of watermelon and melon in Hainan Province as research u- nits, the yield comparative advantage (YCA), efficiency comparative advantage (E- CA), scale comparative advantage (SCA), concentration ratio comparative advantage (CRCA), comprehensive comparative advantage (CCA), ratio of yield per unit area (RYPA), sowing area ratio (SAR), and distribution characteristics of watermelon and melon were systematically analyzed. By referring to the agricultural statistic data of 18 counties (cities) in Hainan Province, indexes for each research unit (i.e., the YCA index, ECA index, SCA index, CRCA index, CCA index, RYPA index, and SAR index) were established and calculated to determine the comparative advantage of watermelon and melon production in Hainan Province. A spatial expression of the research result on a map was conducted by using GIS software. [Result] Seven counties (cities) exhibited comparative advantages in watermelon production, namely, Lingshui, Wanning, Wenchang, Dongfang, Sanya, Ledong, and Changjiang. The Eastern and Southern Hainan Provinces had CCAs, and the Western and Northern Hainan Provinces could be reserved for future development. For melon production, four counties (cities) exhibited comparative advantages, namely, Ledong, Lingshui, Sanya, and Dongfang. The Southern Hainan Province had CCA, whereas the West- ern Hainan Province could be reserved for later development. [Conclusion] The result has showed that establishing watermelon and melon as dominant agricultural prod- ucts is necessary for the future development of the industry and for the formulation of a layout of regions with advantages, where key support and construction should be provided preferentially with the aim to raise the yield, quality, and market com- petitiveness of products.展开更多
The drug-containing culture medium method for the test of toxicity was adopted to compare inhibitive effects of original nano-Cu2O drug and nano-Cu2O suspension, and nano-Cu2O drug has better inhibitive effects on sna...The drug-containing culture medium method for the test of toxicity was adopted to compare inhibitive effects of original nano-Cu2O drug and nano-Cu2O suspension, and nano-Cu2O drug has better inhibitive effects on snake melon Botry- tis cinerea than original nano-Cu2O drug with the same mass concentration, and inhibitory effects are positively correlated with concentration. Correlation coefficients of the toxicity regression equation are 0.892 2 and 0.996 1, effective concentration EC50 of original nano-Cu2O drug and that of nano-Cu2O suspension are 3 948.9 and 167.9 mg/kg. Original nano-Cu2O drug has an inhibitive effect on snake melon Botrytis cinerea, but the inhibition of nano-Cu2O suspension is more obvious.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.32102383,32225044 and 32130093)the Natural Science Foundation of Shandong Province(Grant No.ZR2021QC075)+1 种基金the Taishan Scholar Foundation of the People's Government of Shandong Province(Grant No.ts20190947)the Qingdao Agricultural University Doctoral Start-Up Fund。
文摘High-throughput genotyping tools can effectively promote molecular breeding in crops.In this study,genotyping by target sequencing(GBTS)system was utilized to develop a genome-wide liquid SNP chip for facilitating genetics and breeding in melon(Cucumis melo L.),a globally cultivated economically important horticultural crop.Based on over eight million SNPs derived from 823 representative melon accessions,16K,8K,4K,2K,1K,500,250 and 125 informative SNPs were screened and evaluated for their polymorphisms,conservation of flanking sequences,and distributions.The set of 2K SNPs was found to be optimal for representing the maximum diversity with the lowest number of SNPs,and it was selected to develop the liquid chip,named“Melon2K”.Using Melon2K,more than 1500 SNPs were detected across 17 samples of five melon cultivars,and the phylogenetic relationships were clearly constructed.Within the same cultivar,genetic differences were also assessed between different samples.We evaluated the performance of Melon2K in genetic background selection during the breeding process,obtaining the introgression lines of interested trait with more than 97%genetic background of elite variety by only two rounds of backcrossing.These results suggest that Melon2K provides a cost-effective,efficient and reliable platform for genetic analysis and molecular breeding in melon.
基金financially supported by the Key Project of Liaoning Province(2011215003)the Project of the Science and Technology Bureau of Shenyang,China(F12-277-1-26)
文摘Compared to other melon types, oriental sweet melon (Cucumis melo var. makuwa Makino) is quite a different species with a shorter shelf-life due to its typical climacteric behavior and thin pericarp. The purpose of this experiment is to explore the effects of co- treatment of enhanced freshness formulation (EFF) and 1-methylcyclopropene (1-MCP) on physiological changes and the content of aroma volatile compounds introduced by them of two oriental sweet melon cultivars (Yumeiren and Tianbao) during storage. The melons were stored in incubators with temperature of 15~C and a relative humidity of 85% for 24 d during which fruit quality and related physiological index were measured. Compared to the control, both treatments delayed fruit weight loss rate and kept the fruit firmness, water content and soluble solids content. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities showed fluctuations in treated melons, while lipoxygenase (LOX) activity (P〈0.01) and malondialdehyde (MDA) content (P〈0.05) decreased compared to control. During the early stage of storage, alcohols and aldehydes were the main volatile compounds, and esters gradually increased during storage. Of all the esters, acetic esters were the main components, followed by oxalic acid esters and other esters. The total content of aroma volatile compounds, esters, alcohols and aldehydes of co-treated melons were all higher than those of 1-MCP treated and control melons. In addition, the aroma volatile peak of co-treated melons occurred later than that of 1-MCP treated and control melons. In summary, co-treatment of EFF and 1-MCP was more beneficial than 1-MCP treatment to delay ripening and senescence, maintain fruit quality, enhance shelf-life and improve levels of aroma volatile compounds.
基金Supported by National Natural Science Foundation of China(30870109)
文摘In this work,an electronic nose was used to evaluate the different cultivars and mature stages of melons,so as to establish a scientific method to accurately distinguish the maturity and varieties of melons. Principal component analysis (PCA) and linear discriminant analysis (LDA ) showed that immature melons could be well distinguished from mature melons using electronic nose. When PCA method was used to analyze,electronic nose could completely classify and identify the maturity of melons. Meanwhile,the electronic nose could distinguish different varieties of melons with high discrimination value. The flavor of samples under cut or no cut conditions would slightly change,leading to the variation of discrimination value among different varieties. The samples with similar flavor under no cut condition could be analyzed through cutting mode. The research built a rapid and accurate method to judge the maturity of melons instead of man sense.
文摘Vine decline disease (VDD) constitutes a menace to melons worldwide. Especially, the one caused by the fungus Monosporascus cannonballus. Thus, resistant plant material must be released to help growers. Hence, our goal was to develop resistant plant material to VDD. More than 600 melon accessions are expected to be tested for disease resistance in M. cannonballus infested soil in Weslaco, Texas, USA, to identify resistance to VDD, and other important traits. So far, at most 7 lines were found to be resistant to VDD and some of them were used to develop elite, muskmelon inbred lines by pedigree breeding following single or double backcrosses. These elite parents were crossed to each other to develop the hybrids M3 and M4. They were also tested in the same infested field in Weslaco. The hybrids were grown using standard commercial practices followed by growers and when their fruits were ready, their roots were sampled as well as scored for disease severity to estimate high and mid-parent heterosis Our results indicate the existence of heterosis regarding resistance to VDD. Thus, resistant plant material can be developed and selection for resistance can be accomplished.
基金Supported by Youth Project of National Social Science Fund of China(22CMZ015)。
文摘The development of diversified foods such as melons under the big food concept can reduce the pressure on staple food grain.Xinjiang has the advantages of building a new development pattern of dual circulation of diversified food industry and establishing a national diversified food safety and high-quality assurance center.The construction of an agricultural power needs the strategic support of an intellectual property power.This paper introduced and studied Xinjiang s melon industry and its agricultural intellectual property resources,analyzed the six main problems,including many idle land resources have not been developed into melon fields and the role of melons in diversified food supply systems not well played.Finally,it proposed to vigorously develop diversified food industries such as melons in Xinjiang and establish an eight-point strategy such as national diversified food safety and high-quality assurance center.
基金supported by the National Natural Science Foundation of China[32202050]the National Natural Science Foundation of China[32101965]+2 种基金China Postdoctoral Science Foundation[2020M671373]Jiangsu Postdoctoral Research Funding Program[2020Z070]Innovation Training Program for College Students[202310299649X]。
文摘Bitter melon(Momordica Charania L.),a member of the Cucurbitaceae family,is widely distributed across tropical and subtropical regions.Saponin,an important functional component of bitter melon,has been proven to exert hypoglycemic effects similarly to insulin,and also possesses lipid-lowering properties inhibiting preadipocyte differentiation and fat synthesis^([1]).
基金the Henan Special Funds for Major Science and Technology,China(221100110400)the Henan Scienti?c and Technological Joint Project for Agricultural Improved Varieties,China(2022010503)the National Natural Science Foundation of China(31902038 and 32072564)。
文摘Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.
基金Supported by China Agricultural Research System(CARS-26)~~
文摘[Objective] This study investigated the spatial characteristics of counties (cities) with comparative advantages in watermelon and melon production to provide reference bases in formulating strategies for the development of watermelon and melon industries in Hainan Province. [Method] By using the sowing area, total yield, and yield per unit area of watermelon and melon in Hainan Province as research u- nits, the yield comparative advantage (YCA), efficiency comparative advantage (E- CA), scale comparative advantage (SCA), concentration ratio comparative advantage (CRCA), comprehensive comparative advantage (CCA), ratio of yield per unit area (RYPA), sowing area ratio (SAR), and distribution characteristics of watermelon and melon were systematically analyzed. By referring to the agricultural statistic data of 18 counties (cities) in Hainan Province, indexes for each research unit (i.e., the YCA index, ECA index, SCA index, CRCA index, CCA index, RYPA index, and SAR index) were established and calculated to determine the comparative advantage of watermelon and melon production in Hainan Province. A spatial expression of the research result on a map was conducted by using GIS software. [Result] Seven counties (cities) exhibited comparative advantages in watermelon production, namely, Lingshui, Wanning, Wenchang, Dongfang, Sanya, Ledong, and Changjiang. The Eastern and Southern Hainan Provinces had CCAs, and the Western and Northern Hainan Provinces could be reserved for future development. For melon production, four counties (cities) exhibited comparative advantages, namely, Ledong, Lingshui, Sanya, and Dongfang. The Southern Hainan Province had CCA, whereas the West- ern Hainan Province could be reserved for later development. [Conclusion] The result has showed that establishing watermelon and melon as dominant agricultural prod- ucts is necessary for the future development of the industry and for the formulation of a layout of regions with advantages, where key support and construction should be provided preferentially with the aim to raise the yield, quality, and market com- petitiveness of products.
文摘The drug-containing culture medium method for the test of toxicity was adopted to compare inhibitive effects of original nano-Cu2O drug and nano-Cu2O suspension, and nano-Cu2O drug has better inhibitive effects on snake melon Botry- tis cinerea than original nano-Cu2O drug with the same mass concentration, and inhibitory effects are positively correlated with concentration. Correlation coefficients of the toxicity regression equation are 0.892 2 and 0.996 1, effective concentration EC50 of original nano-Cu2O drug and that of nano-Cu2O suspension are 3 948.9 and 167.9 mg/kg. Original nano-Cu2O drug has an inhibitive effect on snake melon Botrytis cinerea, but the inhibition of nano-Cu2O suspension is more obvious.