With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context o...With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context of the Internet,carrying out education and teaching activities based on digital textbooks can give full play to the rich media,openness and interaction of digital textbooks,broaden students′horizon,enrich students′knowledge,and promote the improvement of students′ability and all-round development.However,in the specific teaching practice,there are also problems such as old compilation ideas,single compilation mode and low efficiency of personalized learning.Therefore,schools and teachers need to constantly innovate the presentation and arrangement of digital textbooks,strengthen technical support,deepen students′understanding of the teaching content of digital textbooks,promote the comprehensive development of students and improve the effectiveness of digital textbook teaching.展开更多
The rapid development and popularization of Internet technology has provided important support for the informatization reform of various industries.University books and materials have the characteristics of large quan...The rapid development and popularization of Internet technology has provided important support for the informatization reform of various industries.University books and materials have the characteristics of large quantities and difficult storage and management.Its digital storage and management platform construction can effectively realize the digital storage and real-time retrieval of books and materials,and help students and teachers to find and use books and materials more quickly.Especially in recent years,with the update of intelligent platforms and other technologies,the resource-sharing platform of university books and materials can realize more convenient book information retrieval without the limitation of time and space.This paper mainly explores the optimization path and platform construction scheme of university libraries and information management under the background of the Internet,hoping to provide some theoretical references for university library managers.展开更多
Background:The Internet plus nursing service program is being piloted in China,which has become a new home nursing service model led by nurses.To enable safe and effective homecare service delivery,nurses working in t...Background:The Internet plus nursing service program is being piloted in China,which has become a new home nursing service model led by nurses.To enable safe and effective homecare service delivery,nurses working in the program need a high level of competency.However,the content of these core competencies and the training needs of nurses for Internet plus nursing services are still unknown.Aim:To describe nurses’perceptions of core competencies and training needs to work in the Internet plus nursing service program,thereby providing a reference for the development of training programs.Methods:A qualitative descriptive study using semi-structured interviews was conducted on 15 nurses with experience of working in the Internet plus nursing service program.Interviews were audio-recorded and transcribed verbatim,and the data were analyzed using thematic analysis.Results:Core competencies involved comprehensive assessment competence,direct care practice competence,health education and consulting competence,risk estimation and response competence,and communication competence.Training needs involved complex operational items,knowledge of chronic disease management,professional communication,risk identification and response,nursing standards,norms,and procedures,and utilization of information technology.Conclusions:The training system may be developed based on nurses’core competencies and their training needs to promote professional development of the Internet plus nursing service.展开更多
The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrou...The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrounding radiation flux is high.The shutter door will close when passing below an altitude threshold to protect against trapped particles in the Earth’s Van Allen Belts.Therefore,two radiation environments can be approximated based on the shutter door position:open and closed.The instrument background for the CCDs(Charge-Coupled Devices)that form the focal plane array of the SXI were evaluated for the two environments.Due to the correlation of the space environment with the solar cycle,the solar minima and maxima,the background was also evaluated at these two extremes.The results demonstrated that the highest instrument background will occur during solar minima due to the main contributing source being Galactic Cosmic Rays(GCRs).It was also found that the open background was highest for solar minima and that the closed background was highest during solar maxima.This is due to the radiation shutter door acting as a scattering centre and the changes in the energy flux distribution of the GCRs between the two solar extremes.展开更多
Over the past few decades,the Internet has rapidly diffused across China.The spread of the Internet has had a profound economic and social impact on Chinese rural areas.Existing research shows that Internet access sig...Over the past few decades,the Internet has rapidly diffused across China.The spread of the Internet has had a profound economic and social impact on Chinese rural areas.Existing research shows that Internet access significantly impacts agricultural production and improves smallholder farmers’income.Beyond these,the Internet can affect other dimensions of social welfare.However,research about the impact of Internet access on dietary quality in rural China remains scarce.This study utilizes multi-period panel data from Fixed Observation Point in rural China from 2009 to 2015 to estimate the impact of Internet access on dietary quality and food consumption of rural households and conducts a causal analysis.Regression models with time and household fixed effects allow robust estimation while reducing potential issues of unobserved heterogeneity.The estimates show that Internet access has significantly increased rural household dietary quality(measured by the Chinese Diet Balance Index).Further research finds that Internet access has increased the consumption of animal products,such as aquatic and dairy products.We also examine the underlying mechanisms.Internet access improves dietary quality and food consumption mainly through increasing household income and food expenditure.These results encourage the promotion of Internet access as a valuable tool for nutritional improvements,especially in rural areas.展开更多
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead...Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.展开更多
Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suf...Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.展开更多
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency...High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.展开更多
This study was conducted to explore the construction of scaffolding teaching mode of Traditional Chinese Medicine under the background of"Internet+".The students of Grade 2018 majoring in traditional Chinese...This study was conducted to explore the construction of scaffolding teaching mode of Traditional Chinese Medicine under the background of"Internet+".The students of Grade 2018 majoring in traditional Chinese medicine were selected as the object,and some chapters of the textbook of traditional Chinese medicine were selected and taught by the traditional teaching mode while interspersing the scaffolding teaching mode,in order to help the implementation of the scaffolding teaching model.We adopted the methods of setting up situational scaffolding,question scaffolding and guide scaffolding to carry out relevant teaching contents.The scaffolding instruction model has a good degree of participation,and to a certain extent,it stimulates students'self-consciousness and enthusiasm,and improves their ability of analyzing and solving problems and their spirit of innovation.展开更多
This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise consta...This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise constant function.The structural stability of the steady transonic shock solution is obtained by the monotonicity argument.Furthermore,this transonic shock is proved to be dynamically and exponentially stable with respect to small perturbations of the initial data.One of the crucial ingredients of the analysis is to establish the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions.展开更多
The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has...The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.展开更多
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide...The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.展开更多
Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the...Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the lightning detection results.These observations are then compared with the cloud-to-ground(CG)lightning observation data from the China Meteorological Administration.This study focuses on the characteristics of lightning activity in Southeast China,primarily in Jiangxi Province and its adjacent areas,from April to September,2017–2022.In addition,with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data,we further delved into the potential factors influencing the distribution and variations in lightning activity and their primary related factors.Our findings indicate that the lightning frequency and density of the FY-4A/LMI,ISS-LIS and CG data are higher in southern and central Jiangxi,central Fujian Province,and western and central Guangdong Province,while they tend to be lower in eastern Hunan Province.In general,the high-value areas of lightning density for the FY-4A/LMI are located in inland mountainous areas.The lower the latitude is,the higher the CG lightning density is.High-value areas of the CG lightning density are more likely to be located in eastern Fujian and southeastern Zhejiang Province.However,the high-value areas of lightning density for the ISS-LIS are more dispersed,with a scattered distribution in inland mountainous areas and along the coast of eastern Fujian.Thus,the mountainous terrain is closely related to the high-value areas of the lightning density.The locations of the high-value areas of the lightning density for the FY-4A/LMI correspond well with those for the CG observations,and the seasonal variations are also consistent.In contrast,the distribution of the high-value areas of the lightning density for the ISS-LIS is more dispersed.The positions of the peak frequency of the FY-4A/LMI lightning and CG lightning contrast with local altitudes,primarily located at lower altitudes or near mountainsides.K-index and convective available potential energy(CAPE)can better reflect the local boundary layer conditions,where the lightning density is higher and lightning seasonal variations are apparent.There are strong correlations in the annual variations between the dew-point temperature(Td)and CG lightning frequency,and the monthly variations of the dew-point temperature and CAPE are also strongly correlated with monthly variations of CG lightning,while they are weakly correlated with the lightning frequency for the FY-4A/LMI and ISS-LIS.This result reflects that the CAPE shows a remarkable effect on the CG lightning frequency during seasonal transitions.展开更多
Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible t...Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible to cybersecurity threats due to its reliance on low-power biomedical devices and the use of open wireless channels for communication.In this article,we intend to address this shortcoming,and as a result,we propose a new scheme called,the certificateless anonymous authentication(CAA)scheme.The proposed scheme is based on hyperelliptic curve cryptography(HECC),an enhanced variant of elliptic curve cryptography(ECC)that employs a smaller key size of 80 bits as compared to 160 bits.The proposed scheme is secure against various attacks in both formal and informal security analyses.The formal study makes use of the Real-or-Random(ROR)model.A thorough comparative study of the proposed scheme is conducted for the security and efficiency of the proposed scheme with the relevant existing schemes.The results demonstrate that the proposed scheme not only ensures high security for health-related data but also increases efficiency.The proposed scheme’s computation cost is 2.88 ms,and the communication cost is 1440 bits,which shows its better efficiency compared to its counterpart schemes.展开更多
Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enh...Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enhance the range of network information services accessible to humans.With the transition of terrestrial mobile communication networks from the 5G era,which provides access to information anywhere,to the 6G era,which seeks to connect everything,the construction of satellite Internet,which promises a"network reaching everywhere and service is ubiquitous",has become the consensus of the industry's development and the focus of global scientific and technological innovation.展开更多
The Internet of Things(IoT)connects objects to Internet through sensor devices,radio frequency identification devices and other information collection and processing devices to realize information interaction.IoT is w...The Internet of Things(IoT)connects objects to Internet through sensor devices,radio frequency identification devices and other information collection and processing devices to realize information interaction.IoT is widely used in many fields,including intelligent transportation,intelligent healthcare,intelligent home and industry.In these fields,IoT devices connected via high-speed internet for efficient and reliable communications and faster response times.展开更多
The recently observed gravitational wave background is explained in terms of the quantum modification of the general relativity (Qmoger). Some UFO, FRB and supernova flares also can be explained in terms of Qmoger.
Internet-based interventions(IBIs)for behavioural health have been prevalent for over two decades,and a growing proportion of individuals with mental health concerns prefer these emerging digital alternatives.However,...Internet-based interventions(IBIs)for behavioural health have been prevalent for over two decades,and a growing proportion of individuals with mental health concerns prefer these emerging digital alternatives.However,the effectiveness and acceptability of IBIs for various mental health disorders continue to be subject to scholarly debate.We performed an umbrella review of meta-analyses(MAs),conducting literature searches in PubMed,Web of Science,Embase,Cochrane and Ovid Medline from their inception to 17 January 2023.A total of 87MAs,reporting on 1683 randomised controlled trials and 295589 patients,were included.The results indicated that IBIs had a moderate effect on anxiety disorder(standardised mean difference(SMD)=0.53,95%CI 0.44 to 0.62)and post-traumatic stress disorder(PTSD)(SMD=0.63,95%CI 0.38 to 0.89).In contrast,the efficacy on depression(SMD=0.45,95%CI 0.39 to 0.52),addiction(SMD=0.23,95%CI 0.16 to 0.31),suicidal ideation(SMD=0.23,95%CI 0.16 to 0.30),stress(SMD=0.41,95%CI 0.33 to 0.48)and obsessive-compulsive disorder(SMD=0.47,95%CI 0.22 to 0.73)was relatively small.However,no significant effects were observed for personality disorders(SMD=0.07,95%CI-0.13 to 0.26).Our findings suggest a significant association between IBIs and improved mental health outcomes,with particular effectiveness noted in treating anxiety disorders and PTSD.However,it is noteworthy that the effectiveness of IBIs was impacted by high dropout rates during treatment.Furthermore,our results indicated that guided IBIs proved to be more effective than unguided ones,playing a positive role in reducing dropout rates and enhancing patient adherence rates.展开更多
Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest v...Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.展开更多
In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are...In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.展开更多
基金supported by Second Batch of Curriculum Assessment Reform Pilot Project of Sanya University,(SYJGKH2023029)。
文摘With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context of the Internet,carrying out education and teaching activities based on digital textbooks can give full play to the rich media,openness and interaction of digital textbooks,broaden students′horizon,enrich students′knowledge,and promote the improvement of students′ability and all-round development.However,in the specific teaching practice,there are also problems such as old compilation ideas,single compilation mode and low efficiency of personalized learning.Therefore,schools and teachers need to constantly innovate the presentation and arrangement of digital textbooks,strengthen technical support,deepen students′understanding of the teaching content of digital textbooks,promote the comprehensive development of students and improve the effectiveness of digital textbook teaching.
文摘The rapid development and popularization of Internet technology has provided important support for the informatization reform of various industries.University books and materials have the characteristics of large quantities and difficult storage and management.Its digital storage and management platform construction can effectively realize the digital storage and real-time retrieval of books and materials,and help students and teachers to find and use books and materials more quickly.Especially in recent years,with the update of intelligent platforms and other technologies,the resource-sharing platform of university books and materials can realize more convenient book information retrieval without the limitation of time and space.This paper mainly explores the optimization path and platform construction scheme of university libraries and information management under the background of the Internet,hoping to provide some theoretical references for university library managers.
基金supported by the undergraduate scientific research and innovation project of Capital Medical University (No.XSKY2020078).
文摘Background:The Internet plus nursing service program is being piloted in China,which has become a new home nursing service model led by nurses.To enable safe and effective homecare service delivery,nurses working in the program need a high level of competency.However,the content of these core competencies and the training needs of nurses for Internet plus nursing services are still unknown.Aim:To describe nurses’perceptions of core competencies and training needs to work in the Internet plus nursing service program,thereby providing a reference for the development of training programs.Methods:A qualitative descriptive study using semi-structured interviews was conducted on 15 nurses with experience of working in the Internet plus nursing service program.Interviews were audio-recorded and transcribed verbatim,and the data were analyzed using thematic analysis.Results:Core competencies involved comprehensive assessment competence,direct care practice competence,health education and consulting competence,risk estimation and response competence,and communication competence.Training needs involved complex operational items,knowledge of chronic disease management,professional communication,risk identification and response,nursing standards,norms,and procedures,and utilization of information technology.Conclusions:The training system may be developed based on nurses’core competencies and their training needs to promote professional development of the Internet plus nursing service.
文摘The ESA and CAS SMILE mission orbit is highly elliptical and will pass through multiple radiation environments.The Soft X-ray Imager(SXI)instrument aboard has a radiation shutter door designed to close when the surrounding radiation flux is high.The shutter door will close when passing below an altitude threshold to protect against trapped particles in the Earth’s Van Allen Belts.Therefore,two radiation environments can be approximated based on the shutter door position:open and closed.The instrument background for the CCDs(Charge-Coupled Devices)that form the focal plane array of the SXI were evaluated for the two environments.Due to the correlation of the space environment with the solar cycle,the solar minima and maxima,the background was also evaluated at these two extremes.The results demonstrated that the highest instrument background will occur during solar minima due to the main contributing source being Galactic Cosmic Rays(GCRs).It was also found that the open background was highest for solar minima and that the closed background was highest during solar maxima.This is due to the radiation shutter door acting as a scattering centre and the changes in the energy flux distribution of the GCRs between the two solar extremes.
基金This study was supported in part by the National Natural Science Foundation of China(71973136 and 72061147002)the 2115 Talent Development Program of China Agricultural University.
文摘Over the past few decades,the Internet has rapidly diffused across China.The spread of the Internet has had a profound economic and social impact on Chinese rural areas.Existing research shows that Internet access significantly impacts agricultural production and improves smallholder farmers’income.Beyond these,the Internet can affect other dimensions of social welfare.However,research about the impact of Internet access on dietary quality in rural China remains scarce.This study utilizes multi-period panel data from Fixed Observation Point in rural China from 2009 to 2015 to estimate the impact of Internet access on dietary quality and food consumption of rural households and conducts a causal analysis.Regression models with time and household fixed effects allow robust estimation while reducing potential issues of unobserved heterogeneity.The estimates show that Internet access has significantly increased rural household dietary quality(measured by the Chinese Diet Balance Index).Further research finds that Internet access has increased the consumption of animal products,such as aquatic and dairy products.We also examine the underlying mechanisms.Internet access improves dietary quality and food consumption mainly through increasing household income and food expenditure.These results encourage the promotion of Internet access as a valuable tool for nutritional improvements,especially in rural areas.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 62071179.
文摘Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations.
基金supported by the National Natural Science Foundation of China(Nos.51977113,62293500,62293501 and 62293505).
文摘Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.
基金supported in part by the National Natural Science Foundation of China(62371116 and 62231020)in part by the Science and Technology Project of Hebei Province Education Department(ZD2022164)+2 种基金in part by the Fundamental Research Funds for the Central Universities(N2223031)in part by the Open Research Project of Xidian University(ISN24-08)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology,China,CRKL210203)。
文摘High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.
基金Supported by 2017 Teaching Quality and Teaching Reform Project of Guizhou University of Traditional Chinese Medicine(3045-045170035)2018 School-level Undergraduate Teaching Engineering Construction Project of Guiyang College of Traditional Chinese Medicine(GZY-JG(2018)03)。
文摘This study was conducted to explore the construction of scaffolding teaching mode of Traditional Chinese Medicine under the background of"Internet+".The students of Grade 2018 majoring in traditional Chinese medicine were selected as the object,and some chapters of the textbook of traditional Chinese medicine were selected and taught by the traditional teaching mode while interspersing the scaffolding teaching mode,in order to help the implementation of the scaffolding teaching model.We adopted the methods of setting up situational scaffolding,question scaffolding and guide scaffolding to carry out relevant teaching contents.The scaffolding instruction model has a good degree of participation,and to a certain extent,it stimulates students'self-consciousness and enthusiasm,and improves their ability of analyzing and solving problems and their spirit of innovation.
基金supported by the National Natural Science Foundation of China(11871134,12171166)the Fundamental Research Funds for the Central Universities(DUT23LAB303)。
文摘This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise constant function.The structural stability of the steady transonic shock solution is obtained by the monotonicity argument.Furthermore,this transonic shock is proved to be dynamically and exponentially stable with respect to small perturbations of the initial data.One of the crucial ingredients of the analysis is to establish the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions.
基金the National Natural Science Foundation of China(No.61662004).
文摘The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.
基金This paper is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.004-0001-C01.
文摘The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.
基金National Natural Science Foundation of China(42175014,42205137)Open Research Fund of Institute of Meteorological Technology Innovation,Nanjing(BJG202202)+3 种基金Joint Research Project of Typhoon Research,Shanghai Typhoon Institute,China Meteorological Administration(TFJJ202209)Innovation Development Project of China Meteorological Administration(CXFZ2023P001)Open Project of KLME&CIC-FEMD(KLME202311)Jiangxi MDIA-ASI Fund。
文摘Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the lightning detection results.These observations are then compared with the cloud-to-ground(CG)lightning observation data from the China Meteorological Administration.This study focuses on the characteristics of lightning activity in Southeast China,primarily in Jiangxi Province and its adjacent areas,from April to September,2017–2022.In addition,with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data,we further delved into the potential factors influencing the distribution and variations in lightning activity and their primary related factors.Our findings indicate that the lightning frequency and density of the FY-4A/LMI,ISS-LIS and CG data are higher in southern and central Jiangxi,central Fujian Province,and western and central Guangdong Province,while they tend to be lower in eastern Hunan Province.In general,the high-value areas of lightning density for the FY-4A/LMI are located in inland mountainous areas.The lower the latitude is,the higher the CG lightning density is.High-value areas of the CG lightning density are more likely to be located in eastern Fujian and southeastern Zhejiang Province.However,the high-value areas of lightning density for the ISS-LIS are more dispersed,with a scattered distribution in inland mountainous areas and along the coast of eastern Fujian.Thus,the mountainous terrain is closely related to the high-value areas of the lightning density.The locations of the high-value areas of the lightning density for the FY-4A/LMI correspond well with those for the CG observations,and the seasonal variations are also consistent.In contrast,the distribution of the high-value areas of the lightning density for the ISS-LIS is more dispersed.The positions of the peak frequency of the FY-4A/LMI lightning and CG lightning contrast with local altitudes,primarily located at lower altitudes or near mountainsides.K-index and convective available potential energy(CAPE)can better reflect the local boundary layer conditions,where the lightning density is higher and lightning seasonal variations are apparent.There are strong correlations in the annual variations between the dew-point temperature(Td)and CG lightning frequency,and the monthly variations of the dew-point temperature and CAPE are also strongly correlated with monthly variations of CG lightning,while they are weakly correlated with the lightning frequency for the FY-4A/LMI and ISS-LIS.This result reflects that the CAPE shows a remarkable effect on the CG lightning frequency during seasonal transitions.
文摘Internet of Health Things(IoHT)is a subset of Internet of Things(IoT)technology that includes interconnected medical devices and sensors used in medical and healthcare information systems.However,IoHT is susceptible to cybersecurity threats due to its reliance on low-power biomedical devices and the use of open wireless channels for communication.In this article,we intend to address this shortcoming,and as a result,we propose a new scheme called,the certificateless anonymous authentication(CAA)scheme.The proposed scheme is based on hyperelliptic curve cryptography(HECC),an enhanced variant of elliptic curve cryptography(ECC)that employs a smaller key size of 80 bits as compared to 160 bits.The proposed scheme is secure against various attacks in both formal and informal security analyses.The formal study makes use of the Real-or-Random(ROR)model.A thorough comparative study of the proposed scheme is conducted for the security and efficiency of the proposed scheme with the relevant existing schemes.The results demonstrate that the proposed scheme not only ensures high security for health-related data but also increases efficiency.The proposed scheme’s computation cost is 2.88 ms,and the communication cost is 1440 bits,which shows its better efficiency compared to its counterpart schemes.
文摘Satellite Internet,as a strategic public information infrastructure,can effectively bridge the limitations of traditional terrestrial network coverage,support global coverage and deep space exploration,and greatly enhance the range of network information services accessible to humans.With the transition of terrestrial mobile communication networks from the 5G era,which provides access to information anywhere,to the 6G era,which seeks to connect everything,the construction of satellite Internet,which promises a"network reaching everywhere and service is ubiquitous",has become the consensus of the industry's development and the focus of global scientific and technological innovation.
文摘The Internet of Things(IoT)connects objects to Internet through sensor devices,radio frequency identification devices and other information collection and processing devices to realize information interaction.IoT is widely used in many fields,including intelligent transportation,intelligent healthcare,intelligent home and industry.In these fields,IoT devices connected via high-speed internet for efficient and reliable communications and faster response times.
文摘The recently observed gravitational wave background is explained in terms of the quantum modification of the general relativity (Qmoger). Some UFO, FRB and supernova flares also can be explained in terms of Qmoger.
基金supported by Anhui Province University Scientific Research Projects(2023AH040086)Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention(SYS2023B08).
文摘Internet-based interventions(IBIs)for behavioural health have been prevalent for over two decades,and a growing proportion of individuals with mental health concerns prefer these emerging digital alternatives.However,the effectiveness and acceptability of IBIs for various mental health disorders continue to be subject to scholarly debate.We performed an umbrella review of meta-analyses(MAs),conducting literature searches in PubMed,Web of Science,Embase,Cochrane and Ovid Medline from their inception to 17 January 2023.A total of 87MAs,reporting on 1683 randomised controlled trials and 295589 patients,were included.The results indicated that IBIs had a moderate effect on anxiety disorder(standardised mean difference(SMD)=0.53,95%CI 0.44 to 0.62)and post-traumatic stress disorder(PTSD)(SMD=0.63,95%CI 0.38 to 0.89).In contrast,the efficacy on depression(SMD=0.45,95%CI 0.39 to 0.52),addiction(SMD=0.23,95%CI 0.16 to 0.31),suicidal ideation(SMD=0.23,95%CI 0.16 to 0.30),stress(SMD=0.41,95%CI 0.33 to 0.48)and obsessive-compulsive disorder(SMD=0.47,95%CI 0.22 to 0.73)was relatively small.However,no significant effects were observed for personality disorders(SMD=0.07,95%CI-0.13 to 0.26).Our findings suggest a significant association between IBIs and improved mental health outcomes,with particular effectiveness noted in treating anxiety disorders and PTSD.However,it is noteworthy that the effectiveness of IBIs was impacted by high dropout rates during treatment.Furthermore,our results indicated that guided IBIs proved to be more effective than unguided ones,playing a positive role in reducing dropout rates and enhancing patient adherence rates.
基金Key Project of Joint Meteorological Fund of the National Natural Science Foundation of China (U2242202)Key Project of the National Natural Science Foundation of China (42030611)+1 种基金Innovative Development Special Project of China Meteorological Administration (CXFZ2023J016)Innovation Team Fund of Sichuan Provincial Meteorological Service (SCQXCX7D-202201)。
文摘Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.
基金supported by the National Natural Science Foundation of China(No.92267301).
文摘In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.