期刊文献+
共找到785篇文章
< 1 2 40 >
每页显示 20 50 100
Defect Detection Model Using Time Series Data Augmentation and Transformation 被引量:1
1
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 Defect detection time series deep learning data augmentation data transformation
下载PDF
Multivariate Time Series Anomaly Detection Based on Spatial-Temporal Network and Transformer in Industrial Internet of Things
2
作者 Mengmeng Zhao Haipeng Peng +1 位作者 Lixiang Li Yeqing Ren 《Computers, Materials & Continua》 SCIE EI 2024年第8期2815-2837,共23页
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A... In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods. 展开更多
关键词 Multivariate time series anomaly detection spatial-temporal network TRANSFORMER
下载PDF
Advancing Autoencoder Architectures for Enhanced Anomaly Detection in Multivariate Industrial Time Series
3
作者 Byeongcheon Lee Sangmin Kim +2 位作者 Muazzam Maqsood Jihoon Moon Seungmin Rho 《Computers, Materials & Continua》 SCIE EI 2024年第10期1275-1300,共26页
In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)da... In the context of rapid digitization in industrial environments,how effective are advanced unsupervised learning models,particularly hybrid autoencoder models,at detecting anomalies in industrial control system(ICS)datasets?This study is crucial because it addresses the challenge of identifying rare and complex anomalous patterns in the vast amounts of time series data generated by Internet of Things(IoT)devices,which can significantly improve the reliability and safety of these systems.In this paper,we propose a hybrid autoencoder model,called ConvBiLSTMAE,which combines convolutional neural network(CNN)and bidirectional long short-term memory(BiLSTM)to more effectively train complex temporal data patterns in anomaly detection.On the hardware-in-the-loopbased extended industrial control system dataset,the ConvBiLSTM-AE model demonstrated remarkable anomaly detection performance,achieving F1 scores of 0.78 and 0.41 for the first and second datasets,respectively.The results suggest that hybrid autoencoder models are not only viable,but potentially superior alternatives for unsupervised anomaly detection in complex industrial systems,offering a promising approach to improving their reliability and safety. 展开更多
关键词 Advanced anomaly detection autoencoder innovations unsupervised learning industrial security multivariate time series analysis
下载PDF
Cross-Dimension Attentive Feature Fusion Network for Unsupervised Time-Series Anomaly Detection
4
作者 Rui Wang Yao Zhou +2 位作者 Guangchun Luo Peng Chen Dezhong Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3011-3027,共17页
Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconst... Time series anomaly detection is crucial in various industrial applications to identify unusual behaviors within the time series data.Due to the challenges associated with annotating anomaly events,time series reconstruction has become a prevalent approach for unsupervised anomaly detection.However,effectively learning representations and achieving accurate detection results remain challenging due to the intricate temporal patterns and dependencies in real-world time series.In this paper,we propose a cross-dimension attentive feature fusion network for time series anomaly detection,referred to as CAFFN.Specifically,a series and feature mixing block is introduced to learn representations in 1D space.Additionally,a fast Fourier transform is employed to convert the time series into 2D space,providing the capability for 2D feature extraction.Finally,a cross-dimension attentive feature fusion mechanism is designed that adaptively integrates features across different dimensions for anomaly detection.Experimental results on real-world time series datasets demonstrate that CAFFN performs better than other competing methods in time series anomaly detection. 展开更多
关键词 Time series anomaly detection unsupervised feature learning feature fusion
下载PDF
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM
5
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 Network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
下载PDF
Unsupervised Time Series Segmentation: A Survey on Recent Advances
6
作者 Chengyu Wang Xionglve Li +1 位作者 Tongqing Zhou Zhiping Cai 《Computers, Materials & Continua》 SCIE EI 2024年第8期2657-2673,共17页
Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on t... Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on time series segmentation,most of them focus more on change point detection(CPD)methods and overlook the advances in boundary detection(BD)and state detection(SD)methods.In this paper,we categorize time series segmentation methods into CPD,BD,and SD methods,with a specific focus on recent advances in BD and SD methods.Within the scope of BD and SD,we subdivide the methods based on their underlying models/techniques and focus on the milestones that have shaped the development trajectory of each category.As a conclusion,we found that:(1)Existing methods failed to provide sufficient support for online working,with only a few methods supporting online deployment;(2)Most existing methods require the specification of parameters,which hinders their ability to work adaptively;(3)Existing SD methods do not attach importance to accurate detection of boundary points in evaluation,which may lead to limitations in boundary point detection.We highlight the ability to working online and adaptively as important attributes of segmentation methods,the boundary detection accuracy as a neglected metrics for SD methods. 展开更多
关键词 Time series segmentation time series state detection boundary detection change point detection
下载PDF
Fine-Grained Multivariate Time Series Anomaly Detection in IoT 被引量:1
7
作者 Shiming He Meng Guo +4 位作者 Bo Yang Osama Alfarraj Amr Tolba Pradip Kumar Sharma Xi’ai Yan 《Computers, Materials & Continua》 SCIE EI 2023年第6期5027-5047,共21页
Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and m... Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection. 展开更多
关键词 Multivariate time series graph attention neural network fine-grained anomaly detection
下载PDF
A new method for coseismic offset detection from GPS coordinate time series
8
作者 Zhiwei Yang Guangyu Xu +3 位作者 Tengxu Zhang Mingkai Chen FeiWu Zhiping Chen 《Geodesy and Geodynamics》 EI CSCD 2023年第6期551-558,共8页
Currently,the extraction of coseismic offset signals primarily relies on earthquake catalog data to determine the occurrence time of earthquakes.This is followed by the process of differencing the average GPS coordina... Currently,the extraction of coseismic offset signals primarily relies on earthquake catalog data to determine the occurrence time of earthquakes.This is followed by the process of differencing the average GPS coordinate time series data,with a time interval of 3 to 5 days before and after the earthquake.In the face of the huge amount of GPS coordinate time series data today,the conventional approach of relying on earthquake catalog data to assist in obtaining coseismic offset signals has become increasingly burdensome.To address this problem,we propose a new method for automatically detecting coseismic offset signals in GPS coordinate time series without an extra earthquake catalog for reference.Firstly,we pre-process the GPS coordinate time series data for filtering out stations with significant observations missing and detecting and removing outliers.Secondly,we eliminate other signals and errors in the GPS coordinate time series,such as trend and seasonal signals,leaving the coseismic offset signals as the primary signal.The resulting coordinate time series is then modeled using the first-order difference and data stacking method.The modeling method enables automatic detection of the coseismic offset signals in the GPS coordinate time series.The aforementioned method is applied to automatically detect coseismic offset signals using simulated data and the Searles Valley GPS data in California,USA.The results demonstrate the efficacy of our proposed method,successfully detecting coseismic offsets from vast amounts of GPS coordinate time series data. 展开更多
关键词 GPS Coordinate time series Coseismic offset Signal detection
下载PDF
A Memory-Guided Anomaly Detection Model with Contrastive Learning for Multivariate Time Series
9
作者 Wei Zhang Ping He +2 位作者 Ting Li Fan Yang Ying Liu 《Computers, Materials & Continua》 SCIE EI 2023年第11期1893-1910,共18页
Some reconstruction-based anomaly detection models in multivariate time series have brought impressive performance advancements but suffer from weak generalization ability and a lack of anomaly identification.These li... Some reconstruction-based anomaly detection models in multivariate time series have brought impressive performance advancements but suffer from weak generalization ability and a lack of anomaly identification.These limitations can result in the misjudgment of models,leading to a degradation in overall detection performance.This paper proposes a novel transformer-like anomaly detection model adopting a contrastive learning module and a memory block(CLME)to overcome the above limitations.The contrastive learning module tailored for time series data can learn the contextual relationships to generate temporal fine-grained representations.The memory block can record normal patterns of these representations through the utilization of attention-based addressing and reintegration mechanisms.These two modules together effectively alleviate the problem of generalization.Furthermore,this paper introduces a fusion anomaly detection strategy that comprehensively takes into account the residual and feature spaces.Such a strategy can enlarge the discrepancies between normal and abnormal data,which is more conducive to anomaly identification.The proposed CLME model not only efficiently enhances the generalization performance but also improves the ability of anomaly detection.To validate the efficacy of the proposed approach,extensive experiments are conducted on well-established benchmark datasets,including SWaT,PSM,WADI,and MSL.The results demonstrate outstanding performance,with F1 scores of 90.58%,94.83%,91.58%,and 91.75%,respectively.These findings affirm the superiority of the CLME model over existing stateof-the-art anomaly detection methodologies in terms of its ability to detect anomalies within complex datasets accurately. 展开更多
关键词 Anomaly detection multivariate time series contrastive learning memory network
下载PDF
Anomaly IoT Node Detection Based on Local Outlier Factor and Time Series 被引量:2
10
作者 Fang Wang Zhe Wei Xu Zuo 《Computers, Materials & Continua》 SCIE EI 2020年第8期1063-1073,共11页
The heterogeneous nodes in the Internet of Things(IoT)are relatively weak in the computing power and storage capacity.Therefore,traditional algorithms of network security are not suitable for the IoT.Once these nodes ... The heterogeneous nodes in the Internet of Things(IoT)are relatively weak in the computing power and storage capacity.Therefore,traditional algorithms of network security are not suitable for the IoT.Once these nodes alternate between normal behavior and anomaly behavior,it is difficult to identify and isolate them by the network system in a short time,thus the data transmission accuracy and the integrity of the network function will be affected negatively.Based on the characteristics of IoT,a lightweight local outlier factor detection method is used for node detection.In order to further determine whether the nodes are an anomaly or not,the varying behavior of those nodes in terms of time is considered in this research,and a time series method is used to make the system respond to the randomness and selectiveness of anomaly behavior nodes effectively in a short period of time.Simulation results show that the proposed method can improve the accuracy of the data transmitted by the network and achieve better performance. 展开更多
关键词 Local outlier factor time series Internet of Things anomaly node detection
下载PDF
On-line outlier and change point detection for time series 被引量:1
11
作者 苏卫星 朱云龙 +1 位作者 刘芳 胡琨元 《Journal of Central South University》 SCIE EI CAS 2013年第1期114-122,共9页
The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detectio... The detection of outliers and change points from time series has become research focus in the area of time series data mining since it can be used for fraud detection, rare event discovery, event/trend change detection, etc. In most previous works, outlier detection and change point detection have not been related explicitly and the change point detections did not consider the influence of outliers, in this work, a unified detection framework was presented to deal with both of them. The framework is based on ALARCON-AQUINO and BARRIA's change points detection method and adopts two-stage detection to divide the outliers and change points. The advantages of it lie in that: firstly, unified structure for change detection and outlier detection further reduces the computational complexity and make the detective procedure simple; Secondly, the detection strategy of outlier detection before change point detection avoids the influence of outliers to the change point detection, and thus improves the accuracy of the change point detection. The simulation experiments of the proposed method for both model data and actual application data have been made and gotten 100% detection accuracy. The comparisons between traditional detection method and the proposed method further demonstrate that the unified detection structure is more accurate when the time series are contaminated by outliers. 展开更多
关键词 outlier detection change point detection time series hypothesis test
下载PDF
Anomaly Detection in MODIS Land Products via Time Series Analysis 被引量:1
12
作者 ZHANG Jingxiong David Roy +1 位作者 Sadashiva Devadiga ZHENG Min 《Geo-Spatial Information Science》 2007年第1期44-50,共7页
With remote sensing information products becoming increasingly varied and arguably improved, scientific applications of such products rely on their quality assessment. In an operational context such as the NASA (Natio... With remote sensing information products becoming increasingly varied and arguably improved, scientific applications of such products rely on their quality assessment. In an operational context such as the NASA (National Aeronautics and Space Administration) information production based on the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument on board Earth Observing System (EOS) Terra and Aqua satellites, efficient ways of detecting product anomaly, i.e., to discriminate between product artifacts and real changes in Earth processes being monitored, are extremely important to assist and inform the user communities about potential unreliability in the products. A technique for anomaly detection, known as MAD (the median of absolute deviate from the median), in MODIS land products via time series analysis is described, which can handle intra- and in-ter-annual variation in the data by using MAD statistics of the original data and their first-order difference. This method is shown to be robust and work across major land products, including NDVI, active fire, snow cover, and surface reflectance, and its applicabil-ity to multi-disciplinary products is anticipated. 展开更多
关键词 anomaly detection MODIS land products time series
下载PDF
Study on the Detection Methods of DC Series Arc Fault 被引量:3
13
作者 JI Shengchang LIU Yuan ZHU Yeye ZHU Lingyu 《高电压技术》 EI CAS CSCD 北大核心 2013年第9期2131-2137,共7页
It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit i... It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit is established,in which DC series arcs are generated by dragging the moving electrode away from the fixed one with the help of the stepper motor.In addition,a ferrite rod antenna is used to receive the electromagnetic radiation signals induced by the arcs.Based on experiments using the unit,the general characteristics of DC arc,including the pulse characteristics of arc current and source output in corresponding time window,and the frequency-domain characteristics of arc current,are studied.With discussion on three detection methods,it is concluded that the variation of current and voltage of arc,the spectrum of the arc current during the discontinuous intervals and the radiating electromagnetic signal are all features that can be adopted for detecting DC series arc.Therefore,a synthetic judgment method is suggested for further study. 展开更多
关键词 故障检测方法 直流电弧 DC 电磁辐射信号 电力电子系统 电弧电流 模拟单元 脉冲特性
下载PDF
Change Point Detection and Trend Analysis for Time Series
14
作者 Hong Zhang Stephen Jeffrey John Carter 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第2期399-406,I0004,共9页
Trend analysis and change point detection in a time series are frequent analysis tools.Change point detection is the identification of abrupt variation in the process behaviour due to natural or artificial changes,whe... Trend analysis and change point detection in a time series are frequent analysis tools.Change point detection is the identification of abrupt variation in the process behaviour due to natural or artificial changes,whereas trend can be defined as estimation of gradual departure from past norms.We analyze the time series data in the presence of trend,using Cox-Stuart methods together with the change point algorithms.We applied the methods to the nearsurface wind speed time series for Australia as an example.The trends in near-surface wind speeds for Australia have been investigated based upon our newly developed wind speed datasets,which were constructed by blending observational data collected at various heights using local surface roughness information.The trend in wind speed at 10 m is generally increasing while at 2 m it tends to be decreasing.Significance testing,change point analysis and manual inspection of records indicate several factors may be contributing to the discrepancy,such as systematic biases accompanying instrument changes,random data errors(e.g.accumulation day error)and data sampling issues.Homogenization technique and multiple-period trend analysis based upon change point detections have thus been employed to clarify the source of the inconsistencies in wind speed trends. 展开更多
关键词 Time series Change point detection Trend analysis Wind speed HOMOGENIZATION
下载PDF
GAS DETECTING AND FORECASTING VIA TIME SERIES METHOD
15
作者 黄养光 《Journal of China University of Mining and Technology》 1990年第1期83-92,共10页
The importance and urgency of gas detecting and forecasting in underground coal mining are self-evident. Unfortunately, this problem has not yet been solved thoroughly.In this paper, the author suggests that the time ... The importance and urgency of gas detecting and forecasting in underground coal mining are self-evident. Unfortunately, this problem has not yet been solved thoroughly.In this paper, the author suggests that the time series analysis method be adopted for processing the gas stochastic data. The time series method is superior to the conventional Fourier analysis in some aspects, especially, the time series method possesses forecasting (or prediction) function which is highly valuable for gas monitoring.An example of a set of gas data sampled from a certain foul coal mine is investigated and an AR (3) model is established. The fitting result and the forecasting error are accepted satisfactorily.At the end of this paper several remarks are presented for further discussion. 展开更多
关键词 GAS detectION FORECAST time series Fourier analysis
下载PDF
Outlier Detection and Forecasting for Bridge Health Monitoring Based on Time Series Intervention Analysis
16
作者 Bing Qu Ping Liao Yaolong Huang 《Structural Durability & Health Monitoring》 EI 2022年第4期323-341,共19页
The method of time series analysis,applied by establishing appropriate mathematical models for bridge health monitoring data and making forecasts of structural future behavior,stands out as a novel and viable research... The method of time series analysis,applied by establishing appropriate mathematical models for bridge health monitoring data and making forecasts of structural future behavior,stands out as a novel and viable research direction for bridge state assessment.However,outliers inevitably exist in the monitoring data due to various interventions,which reduce the precision of model fitting and affect the forecasting results.Therefore,the identification of outliers is crucial for the accurate interpretation of the monitoring data.In this study,a time series model combined with outlier information for bridge health monitoring is established using intervention analysis theory,and the forecasting of the structural responses is carried out.There are three techniques that we focus on:(1)the modeling of seasonal autoregressive integrated moving average(SARIMA)model;(2)the methodology for outlier identification and amendment under the circumstances that the occurrence time and type of outliers are known and unknown;(3)forecasting of the model with outlier effects.The method was tested with a case study using monitoring data on a real bridge.The establishment of the original SARIMA model without considering outliers is first discussed,including the stationarity,order determination,parameter estimation and diagnostic checking of the model.Then the time-by-time iterative procedure for outlier detection,which is implemented by appropriate test statistics of the residuals,is performed.The SARIMA-outlier model is subsequently built.Finally,a comparative analysis of the forecasting performance between the original model and SARIMA-outlier model is carried out.The results demonstrate that proper time series models are effective in mining the characteristic law of bridge monitoring data.When the influence of outliers is taken into account,the fitted precision of the model is significantly improved and the accuracy and the reliability of the forecast are strengthened. 展开更多
关键词 Structural health monitoring time series analysis outlier detection bridge state assessment bridge sensor data stress forecasting
下载PDF
Dynamic Detection Method of Micro-blog Topic Based on Time Series
17
作者 Deyang Zhang Yiliang Han Xiaolong Li 《国际计算机前沿大会会议论文集》 2018年第2期17-17,共1页
关键词 TIME series TOPIC detectION DYNAMIC Micro-blog topicSingle-pass
下载PDF
Building Real-Time Network Intrusion Detection System Based on Parallel Time-Series Mining Techniques
18
作者 赵峰 李庆华 《Journal of Southwest Jiaotong University(English Edition)》 2005年第1期11-17,共7页
A new real-time model based on parallel time-series mining is proposed to improve the accuracy and efficiency of the network intrusion detection systems. In this model, multidimensional dataset is constructed to descr... A new real-time model based on parallel time-series mining is proposed to improve the accuracy and efficiency of the network intrusion detection systems. In this model, multidimensional dataset is constructed to describe network events, and sliding window updating algorithm is used to maintain network stream. Moreover, parallel frequent patterns and frequent episodes mining algorithms are applied to implement parallel time-series mining engineer which can intelligently generate rules to distinguish intrusions from normal activities. Analysis and study on the basis of DAWNING 3000 indicate that this parallel time-series mining-based model provides a more accurate and efficient way to building real-time NIDS. 展开更多
关键词 Intrusion detection Time-series mining Sliding window Parallel algorithm
下载PDF
A Time Series Data Mining Based on ARMA and MLFNN Model for Intrusion Detection
19
作者 Tianqi Yang 《通讯和计算机(中英文版)》 2006年第7期16-21,30,共7页
关键词 数据处理 网络技术 ARMA模型 MLFMN模型
下载PDF
Univariate Time Series Anomaly Detection Based on Hierarchical Attention Network
20
作者 Zexi Chen Dongqiang Jia +3 位作者 Yushu Sun Lin Yang Wenjie Jin Ruoxi Liu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第4期1181-1193,共13页
In order to support the perception and defense of the operation risk of the medium and low voltage distribution system, it is crucial to conduct data mining on the time series generated by the system to learn anomalou... In order to support the perception and defense of the operation risk of the medium and low voltage distribution system, it is crucial to conduct data mining on the time series generated by the system to learn anomalous patterns, and carry out accurate and timely anomaly detection for timely discovery of anomalous conditions and early alerting. And edge computing has been widely used in the processing of Internet of Things (IoT) data. The key challenge of univariate time series anomaly detection is how to model complex nonlinear time dependence. However, most of the previous works only model the short-term time dependence, without considering the periodic long-term time dependence. Therefore, we propose a new Hierarchical Attention Network (HAN), which introduces seven day-level attention networks to capture fine-grained short-term time dependence, and uses a week-level attention network to model the periodic long-term time dependence. Then we combine the day-level feature learned by day-level attention network and week-level feature learned by week-level attention network to obtain the high-level time feature, according to which we can calculate the anomaly probability and further detect the anomaly. Extensive experiments on a public anomaly detection dataset, and deployment in a real-world medium and low voltage distribution system show the superiority of our proposed framework over state-of-the-arts. 展开更多
关键词 edge computing anomaly detection univariate time series self-attention
原文传递
上一页 1 2 40 下一页 到第
使用帮助 返回顶部